
Cosmos DB
for MongoDB
Developers

Migrating to Azure Cosmos DB and
Using the MongoDB API
—
Manish Sharma

Cosmos DB for
MongoDB Developers
Migrating to Azure Cosmos DB

and Using the MongoDB API

Manish Sharma

Cosmos DB for MongoDB Developers: Migrating to Azure Cosmos DB and
Using the MongoDB API

ISBN-13 (pbk): 978-1-4842-3681-9 ISBN-13 (electronic): 978-1-4842-3682-6
https://doi.org/10.1007/978-1-4842-3682-6

Library of Congress Control Number: 2018953685

Copyright © 2018 by Manish Sharma

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the author nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science+Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484236819.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Manish Sharma
Faridabad, Haryana, India

../../../../../https@doi.org/10.1007/978-1-4842-3682-6

For Shweta, my sweetheart, unfailing support and
my ocean of emotions

v

Table of Contents

Chapter 1: Why NoSQL? ��1

Types of NoSQL ���2

Key-Value Pair ���2

Columnar ���3

Document ��3

Graph ���4

What to Expect from NoSQL ��6

Atomicity ��6

Consistency ���6

Isolation ���6

Durability ���6

Consistency ���7

Availability ���7

Partition Tolerance ���7

Example 1: Availability ���8

Example 2: Consistency ���8

About the Author ���xi

About the Technical Reviewer ���xiii

Acknowledgments ��xv

Introduction ��xvii

vi

NoSQL and Cloud ��8

IaaS��9

PaaS ��9

SaaS ��10

Conclusion ��10

Chapter 2: Azure Cosmos DB Overview ��11

Data Model Overview ��12

Provisioning Azure Cosmos DB ���13

Turnkey Global Distribution ���25

Latency ��29

Consistency ���30

Throughput ��30

Availability ���30

Reliability ���31

Protocol Support and Multimodal API ���32

Table Storage API ���32

SQL (DocumentDB) API ��34

MongoDB API ��38

Graph API ���41

Cassandra API ��48

Elastic Scale ��49

Throughput ��49

Storage ��49

Consistency ���50

Strong ��50

Performance ��54

Table of ConTenTsTable of ConTenTs

vii

Service Level Agreement (SLA) ���55

Availability SLA ��55

Throughput SLA ���56

Consistency SLA ��58

Latency SLA ���59

Conclusion ��59

Chapter 3: Azure Cosmos DB Geo-Replication ������������������������������������61

Database Availability (DA) ���62

MongoDB Replication ��62

Data-Bearing Nodes ��62

Arbiter Nodes ���64

Azure Cosmos DB Replication ���67

Auto-Shifting Geo APIs ��72

Consistency and Global Distribution ���78

Conclusion ��79

Chapter 4: Indexing ��81

Indexing in MongoDB ��81

Single Field Index ��82

Compound Index ��87

Multikey Index ���88

Geospatial Index ��88

Text Index ��91

Hashed Index ���93

Indexing in Azure Cosmos DB ���93

TTL Indexes ���95

Array Indexes ���96

Table of ConTenTsTable of ConTenTs

viii

Sparse Indexes ��97

Unique Indexes ��97

Custom Indexing ���98

Indexing Modes ���99

Indexing Paths ���104

Index Kinds ��105

Index Precision ��108

Data Types ���108

Conclusion ��108

Chapter 5: Partitioning ���109

Sharding ��109

Partitioning in Azure Cosmos DB���113

Optimizations ��122

Selecting a Partition Key ���126

Use Case ��126

Evaluate Every Field to Be a Potential Partition Key ������������������������������������127

Selection of the Partition Key ��128

Conclusion ��135

Chapter 6: Consistency ���137

Consistency in Distributed Databases���137

Consistency in MongoDB ��140

Consistency in Azure Cosmos DB ��142

Consistent Reads/Writes ���142

High Throughput ��148

Conclusion ��153

Table of ConTenTsTable of ConTenTs

ix

Chapter 7: Sizing ��155

Request Units (RUs) ��155

Allocation of RUs ���156

Calculating RUs ���159

Optimizing RU Consumption ���164

Document Size and Complexity ��164

Data Consistency ��168

Indexing ��171

Query Patterns ��176

Conclusion ��177

Chapter 8: Migrating to Azure Cosmos DB–MongoDB API ����������������179

Migration Strategies ���179

mongoexport and mongoimport ��180

For Windows mongodump/mongorestore ���181

Application Switch ��184

Optimization ��186

Conclusion ��188

Chapter 9: Azure Cosmos DB–MongoDB API Advanced Services �����191

Aggregation Pipeline ���191

Spark Connector ���196

Conclusion ��204

 Index ���205

Table of ConTenTsTable of ConTenTs

xi

About the Author

Manish Sharma is a senior technology

evangelist at Microsoft. He has 14 years

of experience at various organizations

and is primarily involved in technological

enhancements. He is a certified Azure

solutions architect, AWS-certified solutions

architect, cloud data architect, .NET solutions

developer, and PMP-certified project manager.

He is a regular speaker at various technical

conferences organized by Microsoft (Future

Decoded, Azure, and specialized webinars)

and its community (GIDS, Docker, etc.) on

client-server, cloud, and data technologies.

xiii

About the Technical Reviewer

Andre Essing advises customers on all

topics related to the Microsoft data platform,

in his capacity as a technology solutions

professional. Since version 7.0, Andre has

acquired experience with the SQL Server

product family, for which he has focused on

infrastructure topics, mission-critical systems,

and security. Today, Andre concentrates

on working with data in the cloud, such as

modern data warehouse architectures, artificial intelligence, and new

scalable database systems, such as Azure Cosmos DB.

In addition to his work at Microsoft, Andre is engaged in the

community as a leader of the Bavaria, Germany, chapter of the

Professional Association for SQL Server (PASS). You can find him as a

speaker at various user groups and international conferences.

xv

Acknowledgments

I would like to express appreciation to my special team: Govind Kanshi,

who helped me along the entire journey, and Sandeep Alur, through whose

inspiration I was able to write this book.

xvii

Introduction

It was a wonderful experience when I first encountered Azure Cosmos

DB–MongoDB API, as this is a new entrant to the technological world with

a promising future. While writing this book, I was able to experience a few

pre-released features, now available, which I have referred to in the text.

During my sessions, I always suggest that architects do their due

diligence while architecting solutions, as any technology can make or

break a system drastically.

This book is specifically focused on making sure that, coming from a

MongoDB background, you will avoid roadblocks and will make informed

decisions. You have made the right choice by starting to learn Azure

Cosmos DB–MongoDB API, which will take your existing skills to the next

level and give you an edge in the cloud era.

MongoDB has been used in the industry for quite a while and has

already hit the roof on-premises worldwide. With the inception of cloud

native databases such as Azure Cosmos DB, any NoSQL must now offer

unlimited scaling, be always on, and have multiple data centers. This book

will guide you in identifying the whys and hows that you can employ in

your applications and help in achieving extraordinary success.

The structure of this book provides an inside look into each aspect of

Azure Cosmos DB. If you are new to NoSQL, I will suggest you start from

Chapter 1; otherwise, jump directly to Chapter 2. Chapters 3 to 6 provide

specialized coverage, respectively, of the topics introduced in Chapter 1.

Chapter 7 is important, as before adopting to modern technology, we

must discuss how much it costs. I recommend that you perform some

experiments, based on your specific situation, before arriving at actual

xviii

costs. Chapter 8 covers aspects related to data migration. Chapter 9

provides detailed information about one of the most loved MongoDB

features, the aggregation pipeline.

Feeling Excited? Cool.

Now it’s time to turn the page and start your journey.

InTroduCTIonInTroduCTIon

1© Manish Sharma 2018
M. Sharma, Cosmos DB for MongoDB Developers,
https://doi.org/10.1007/978-1-4842-3682-6_1

CHAPTER 1

Why NoSQL?
Since schooling most of us are taught to structure information, such

that it can be represented in tabular form. But not all information can

follow that structure, hence the existence of NULL values. The NULL value

represents cells without information. To avoid NULLs, we must split one

table into multiples, thus introducing the concept of normalization. In

normalization, we split the tables, based on the level of normalization

we select. These levels are 1NF (first normal form), 2NF, 3NF, BCNF

(Boyce–Codd normal form, or 3.5NF), 4NF, and 5NF, to name just a few.

Every level dictates the split, and, most commonly, people use 3NF,

which is largely free of insert, update, and delete anomalies.

To achieve normalization, one must split information into multiple

tables and then, while retrieving, join all the tables to make sense of the

split information. This concept poses few problems, and it is still perfect

for online transaction processing (OLTP).

Working on a system that handles data populated from multiple data

streams and adheres to one defined structure is extremely difficult to

implement and maintain. The volume of data is often humongous and

mostly unpredictable. In such cases, splitting data into multiple pieces

while inserting and joining the tables during data retrieval will add

excessive latency.

We can solve this problem by inserting the data in its natural form.

As there is no or minimal transformation required, the latency during

inserting, updating, deleting, and retrieving will be drastically reduced.

2

With this, scaling up and scaling out will be quick and manageable.

Given the flexibility of this solution, it is the most appropriate one for the

problem defined. The solution is NoSQL, also referred to as not only, or

non-relational, SQL.

One can further prioritize performance over consistency, which is

possible with a NoSQL solution and defined by the CAP (consistency,

availability, and partition tolerance) theorem. In this chapter, I will

discuss NoSQL, its diverse types, its comparison with relational database

management systems (RDBMS), and its future applications.

 Types of NoSQL
In NoSQL, data can be represented in multiple forms. Many forms of

NoSQL exist, and the most commonly used ones are key-value, columnar,

document, and graph. In this section, I will summarize the forms most

commonly used.

 Key-Value Pair
This is the simplest data structure form but offers excellent performance.

All the data is referred only through keys, making retrieval very

straightforward. The most popular database in this category is Redis

Cache. An example is shown in Table 1-1.

Table 1-1. Key-Value Representation

Key Value

C1 XXX XXXX XXXX

C2 123456789

C3 10/01/2005

C4 ZZZ ZZZZ ZZZZ

Chapter 1 Why NoSQL?

3

The keys are in the ordered list, and a HashMap is used to locate the

keys effectively.

 Columnar
This type of database stores the data as columns instead of rows (as

RDBMS do) and are optimized for querying large data sets. This type of

database is generally known as a wide column store. Some of the most

popular databases in this category include Cassandra, Apache Hadoop’s

HBase, etc.

Unlike key-value pair databases, columnar databases can store

millions of attributes associated with the key forming a table, but stored

as columns. However, being a NoSQL database, it will not have any fixed

name or number of columns, which makes it a true schema-free database.

 Document
This type of NoSQL database manages data in the form of documents.

Many implementations exist for this kind of database, and they have

different various types of document representation. Some of the most

popular store data as JSON, XML, BSON, etc. The basic idea of storing

data in document form is to retrieve it faster, by matching to its meta

information (see Figures 1-1 and 1-2).

{
 "FirstName": "David",
 "LastName": "Jones",
 "EmployeeId": 10
}

Figure 1-1. Sample document structure (JSON) code

Chapter 1 Why NoSQL?

4

Documents can contain many different forms of data key-value pairs,

key-array pairs, or even nested documents. One of the popular databases

in this category is MongoDB.

 Graph
This type of database stores data in the form of networks, e.g., social

connections, family trees, etc. (see Figure 1-3). Its beauty lies in the

way it stores the data: using a graph structure for semantic queries and

representing it in the form of edges and nodes.

Nodes are leaf information that represent the entity, and the

relationship (or relationships) between two nodes is defined using edges.

In the real world, our relationship to every other individual is different

which can be distinguished by various attributes, at the edges level.

<employee>
 <firstname>David</firstname>
 <lastname>Jones</lastname>
 <employeeId>10</employeeId>
</employee>

Figure 1-2. Sample document structure (XML) code

Chapter 1 Why NoSQL?

5

The graph form of data usually follows the standards defined by Apache

TinkerPop, and the most popular database in this category is Neo4J (see

Figure 1-4b which depicts the outcome of query executed in Figure 1-4a.

Figure 1-3. Graph form of data representation

Figure 1-4a. Gremlin Query on TinkerPop Console to Fetch All
the Records

Figure 1-4b. Result in TinkerPop console

Chapter 1 Why NoSQL?

6

 What to Expect from NoSQL
To better understand the need for using NoSQL, let’s compare it to RDBMS

from a transactional standpoint. For RDBMS, any transaction will have

certain characteristics, which are known as ACID—atomicity, consistency,

isolation, and durability.

 Atomicity
This property ensures that a transaction should be completed or doesn’t

exist at all. If, for any reason, a transaction fails, a full set of changes that

has occurred through the course of transaction will be removed. This is

called rollback.

 Consistency
This property ensures that the system will be in a consistent state after

completion of a transaction (failed or successful).

 Isolation
This property ensures that every transaction will have exclusivity over the

resources, e.g., tables, rows, etc. The reads and writes of the transaction

will not be visible to reads and writes of any other transaction.

 Durability
This property ensures that the data should be persistent and shouldn’t get

lost during a hardware, power, software, or any other failure. To achieve

this, the system will log all the steps performed in the transaction and the

state will get re-created whenever required.

Chapter 1 Why NoSQL?

7

By contrast, NoSQL relies on the concept of the CAP theorem, as

follows.

 Consistency
This ensures that the read performed by any transaction has the latest

information/data for all the nodes. It is a bit different from the consistency

defined in ACID, as ACID’s consistency states that all the data changes

should provide a consistent data view for database connections.

 Availability
Every time data is requested, a response is given without a guarantee of the

latest data. This is critical for systems that require high performance and

tolerate eventuality of data.

 Partition Tolerance
This property will ensure that network failure between nodes will not

impact the system failure or performance. It will help ensuring the

availability of the system and consistent performance.

Most of the time, in a durable distributed system, network durability

will be built in, which helps make all the nodes (partitions) available all the

time. This means we are left with two choices, consistency or availability.

When we choose availability, the system will always process the query and

return the latest data, even if it can’t guarantee the concurrency of the data.

Another theorem, PACELC, is an extension of CAP and states that

if a system is running normally in the absence of partitions, one must

choose between latency and consistency. If the system is designed for

high availability, one must replicate it, then a trade-off occurs between

consistency and latency.

Chapter 1 Why NoSQL?

8

Architects must, therefore, choose the right balance between

availability, consistency, and latency while defining the partition tolerance.

Following are a few examples.

 Example 1: Availability
Consider, for example, a device installed on an elevator for the purpose of

monitoring that elevator. The device posts messages to the main server to

provide a status report. If something goes wrong, it will alert the relevant

personnel to perform an emergency response. Losing such a message

will jeopardize the entire emergency response system, thus selecting

availability over consistency in this case will make the most sense.

 Example 2: Consistency
Consider a reward catalog system that keeps track of allocation and

redemption of reward points. During redemption, the system must take

care of rewards accumulated at point-in-time, and the transaction should

be consistent. Otherwise, one can redeem rewards multiple times. In this

case, selection of consistency is most critical.

 NoSQL and Cloud
NoSQL is designed to do scale out and can span thousands of computer

nodes. It has been used for quite a while and is gaining popularity because

of its unmatchable performance. However, there is no such thing as a

universal database. Hence, we should pick the best technology for the

given use case. By design, NoSQL doesn’t have rigid boundaries, unlike

other traditional systems, but it can easily hit the roof in on-premise

situations.

Chapter 1 Why NoSQL?

9

Today, industry’s needs are growing, and the focus is shifting from

capital expenditure (Capex) to operating expenses (Opex), which means

no one really wants to pay up front. This makes cloud an obvious choice

for an architect, but even in cloud, services are divided into three main

categories: infrastructure as a service (IaaS), platform as a service (PaaS),

and software as a service (SaaS). Let us look at these terms more closely.

 IaaS
This is the simplest and most straightforward way to get started in the

cloud and is favored in lift-and-shift scenarios. In such scenarios, a cloud

service provider is responsible for everything up to virtualization, e.g.,

power, real estate, cooling, hardware, virtualization, etc. The onus for

everything else is on users. They must take care of the operating system,

application server, applications, etc. Example of such services include

the general-purpose virtual machine for Windows/Linux, the specialized

virtual machine for SQL Server, SharePoint, etc.

 PaaS
This is best suited to application’s developers who wish to focus only on

the application and offload everything else to a cloud service provider.

PaaS will help to gain maximum scalability and performance without the

worry over the availability of end points. In this case, the cloud service

provider protects the developer up to the platform level, meaning the

base platform, e.g., the application server, database server, etc. Examples

of these services are database as a service and cache as a service, among

others.

Chapter 1 Why NoSQL?

10

 SaaS
In this scenario, even the responsibility of software lies with the cloud

service provider. Everything will be offloaded to the cloud service provider,

but developers can still upload his or her customizations or integrate them

through APIs. Examples of these services include Office 365, Dynamics

365, etc.

All the previously mentioned services have their own advantages and

disadvantages. However, there is absolutely no need to stick with one type

of service. Instead, one can choose a combination of them for different

purposes. An example could be that the main application is deployed

onto the SaaS, which is integrated with Office 365. The application’s legacy

components could be deployed onto a virtual machine (IaaS), and the

database deployed onto a database as a service PaaS.

 Conclusion
PaaS, is the developer friendly option which is the best for application’s

developers as it will give them freedom from infrastructure management

headaches which includes availability of the database service, database

service support, management of storage, monitoring tools, etc.

I will discuss industry’s most widely and quickly adopted NoSQL

database, which is discussed as a PaaS in subsequent chapters.

Chapter 1 Why NoSQL?

11© Manish Sharma 2018
M. Sharma, Cosmos DB for MongoDB Developers,
https://doi.org/10.1007/978-1-4842-3682-6_2

CHAPTER 2

Azure Cosmos DB
Overview
NoSQL was conceived to address issues related to scalability, durability,

and performance. However, even highly performant systems are limited by

the computing capacity available from an on-premise machine or a virtual

machine in the cloud. In the cloud, having a massive compute-capacity

PaaS is the most desirable option, as, in this case, one needn’t worry about

scalability, performance, and availability. All of these will be provided by

the cloud service provider.

Cosmos DB is one of many PaaS services in Azure, Azure is the

name of Microsoft's public cloud offering. It was designed to consider six

key aspects: global distribution, elastic scale, throughput, well-defined

consistency models, availability, guaranteed low latency and performance,

and easy migration.

Let’s look at each aspect in detail.

12

 Data Model Overview
Azure Cosmos DB’s data model is no different from MongoDB’s. The one

exception is there, which is in MongoDB the parent is MongoDB instance

and in Azure Cosmos DB, it is called as Azure Cosmos DB account which

is the parent entity for the database. Each account can have one or more

databases; each database can have one or more collections; and each

collection can store JSON documents. Figure 2- 1 illustrates the Azure

Cosmos DB data model.

Figure 2-1. Overview of the Azure Cosmos DB data model

Chapter 2 azure Cosmos DB overview

13

 Provisioning Azure Cosmos DB
To provision an Azure Cosmos DB account, navigate to https://portal.

azure.com, then click Create a resource, as shown in Figure 2-2.

Figure 2-2. Click the Create a resource link (circled in red)

Chapter 2 azure Cosmos DB overview

../../../../../https@portal.azure.com/default.htm
../../../../../https@portal.azure.com/default.htm

14

Click Databases ➤ Cosmos DB (Figure 2-3).

Figure 2-3. Select Azure Cosmos DB from the list of popular services,
or search for Cosmos DB

Chapter 2 azure Cosmos DB overview

15

Now, a form will appear with the following fields:

• ID: This field requires you to specify the unique

identifier for your Cosmos DB account. This ID will

act as a prefix for your Cosmos DB account’s URI, i.e.,

<ID>.documents.azure.com. A few constraints are

applicable to this input field, including the following:

• A minimum of three characters and a maximum of

thirty characters are allowed.

• No special characters are allowed, except a hyphen (-).

• Only lowercase input is allowed. This constraint

helps ensures the validity of the URI.

• API: This field requires that you specify the type of

account to create. It provides a total of five API options,

which are as follows (for this book, please select

MongoDB, but you certainly can play around with

other APIs):

• SQL

• MongoDB

• Cassandra

• Table Storage

• Gremlin (Graph)

• Subscription: This field requires that you specify the

Azure Subscription ID under which the account will be

created.

Chapter 2 azure Cosmos DB overview

16

• Resource Group: This field requires you to specify the

existing or new resource group name. Resource groups

help you to do the logical grouping of the Azure service

instances, e.g., a staging resource group can consist

of all the resources required for staging, which could

include virtual machines, virtual networks, Azure

Cosmos DB account(s), Azure Redis Cache, etc.

• Location: In this field, select the Azure region closest to

your users. As a Ring 0 service, this makes available all

the publicly available Azure regions. You will find many

options.

• Enable geo-redundancy: If you select the check box, it

creates a replica within paired regions. Don’t worry;

you can add more replica regions later, as well. You

might be wondering what a paired region is. I will

summarize it. Each Azure region is paired with another

region within the same geographical area to make a

regional pair. Azure makes sure that the update patches

will not be applied to all the Azure regions in a pair

simultaneously. Once the first region is upgraded,

the second will be upgraded. In case of global outage,

Azure systems make sure to prioritize one region within

a pair, so at least one region will be up and running.

• Pin to dashboard: Just as there are shortcuts on

the Windows dashboard, there are shortcuts on

the Azure Portal dashboard, for quick access.

Please check this box.

Chapter 2 azure Cosmos DB overview

17

Now hit the Create button, to submit the request to provision your

Azure Cosmos DB account (Figure 2-4).

Figure 2-4. Input form for provisioning an Azure Cosmos DB account

Chapter 2 azure Cosmos DB overview

18

Once the Azure Cosmos DB account is provisioned, just open the

overview page, by clicking the service’s icon on the dashboard (assuming

that the Pin to dashboard option was checked on the form). The overview

page will have various details about the service end point, including URI,

read locations, write locations, etc. (Figure 2-5).

Figure 2-5. Overview of an Azure Cosmos DB account

Chapter 2 azure Cosmos DB overview

19

Now, let’s create a database and collection which will host the

documents. This can be achieved using Data Explorer. You will see an

option called Data Explorer in the list of options available on the left-hand

side of the screen. Click it to open Data Explorer, then click New Collection

(refer to Figure 2-6).

Figure 2-6. Data Explorer view

A form to add a collection will appear, with the following fields:

• Database ID: Specify a name for the database or select

an existing one.

• Collection ID: Specify a unique name for the collection

(scope of uniqueness would be database).

Chapter 2 azure Cosmos DB overview

20

• Storage capacity: Two options are available: Fixed

and Unlimited. With a fixed storage capacity, the size

of a collection cannot exceed 10GB. This option is

recommended if you have lean collections and would

like to pay less. Typically, this means one partition

(refer to MongoDB shard), and the maximum amount

of throughput, which is to be specified in terms of

request units (see Chapter 7 for additional information

on request units[RUs]), will also be limited in this case

(refer to the following field). To understand partitioning

in detail, see Chapter 5. The second storage capacity

option is Unlimited, whereby storage can be scaled as

required and have a wider range for request units. This

is because, multiple partitions are created behind the

scenes, to cater to your scaling requirements.

• Shard key: If the Unlimited storage option is selected, this

field will become visible (see Figure 2-7). For unlimited

storage, Azure Cosmos DB performs horizontal scaling,

which means it will have multiple partitions (shards

in MongoDB) behind the scenes. Here, Azure Cosmos

DB expects a partition key, which should be in all the

records and shouldn’t have \ & * as part of the key. The

shard key should be the field name, e.g., that of a city or a

customer address (for a nested document), etc.

• Throughput: This field is to specify initial allocation of

RUs, which are a combination of compute + memory

+ IOPS. If you have selected the Fixed storage option,

the range is from 400 to 10,000 RUs, which can’t be

extended. With the Unlimited storage option, the range

is from 1000 RUs to 100,000 RUs, which can be further

expanded by raising an Azure support call.

Chapter 2 azure Cosmos DB overview

21

• Unique key: This feature is equivalent to MongoDB’s

Unique Indexes, in which you can define one or a

combination of fields to be unique, using a shard

key. For example, if you require an employee’s name

to be unique, specify employeeName. If you need a

unique employee name and e-mail address, specify

employeeName, e-mail, etc. (see Chapter 4 for details

related to indexing). Please note, it can be created after

creating the collection like MongoDB.

Figure 2-7. Form to create a collection and database (with the
Unlimited option)

Chapter 2 azure Cosmos DB overview

22

Now it is time to view the documents. Click the arrow adjacent to the

database name to expand ➤ click the arrow adjacent to the collection

name to expand ➤ click Documents, to view the list of documents. As

there has been no document until now (see Figure 2-8), let’s create a

document, by hitting New Document, and submit the sample JSON given

in Listing 2-1, (feel free to modify it).

Listing 2-1. Sample JSON Document

{

 "_id" : "test",

 "chapters" : {

 "tags" : [

 "mongodb",

 "CosmosDB"

]

 }

}

Figure 2-8. Data Explorer, shown with Document View and New
Document button (circled in red)

Chapter 2 azure Cosmos DB overview

23

Now, click the Save button, which will send the request to Azure

Cosmos DB to create the document. Once the document is created, it can

be managed in Data Explorer itself (see Figure 2-9, which offers a view of a

specific document).

An option can be used to build the MongoDB shell. By clicking the

New Shell button, it will appear in a window, from which you can execute

most of the MongoDB queries (see Figure 2-10).

Figure 2-9. Data Explorer with Document View (the Documents
option and a “test” document are circled in red)

Figure 2-10. Data Explorer with Shell View

Chapter 2 azure Cosmos DB overview

24

You can also use your favorite MongoDB console. Navigate to Quick

start in the list of options on the left-hand side of the screen, then click

MongoDB Shell, which will display the auto-generated connect command.

Copy this command by clicking the Copy button just next to the string

(see Figure 2-11), then open your Linux/Windows command prompt

and execute the command. (For Linux, change mongo.exe to mongo in the

command prompt; see Figure 2-12.)

Now, we can try running the same command and compare the

outcome (which should be the same) refer Figures 2-13 and 2-14.

Figure 2-11. Quick start for the MongoDB Shell’s auto-generated
connect command

Figure 2-12. Command pasted onto Linux console

Figure 2-13. Connection to Azure Cosmos DB from MongoDB
console

Chapter 2 azure Cosmos DB overview

25

Note at the time of writing this book, the shell feature was a work
in progress. therefore, try to use the mongoDB shell to execute your
queries.

Now, let’s look at key features of Azure Cosmos DB.

 Turnkey Global Distribution
Geo-replication is an important aspect of any multi-tenant application.

Considering the industry focus on expansion of cloud footprints, it is now

feasible to deploy applications nearer to a user’s geographic location,

but it is not an easy task. One must consider various aspects before

implementing it. Even in the NoSQL world, this can be a nightmare.

Imagine an application is deployed in Australia, and the user is

accessing it from the United States. The user will encounter huge latency

in every request—roughly 300ms to 400ms per request. You might

be wondering about the latency, the short answer is, the latency is a

function of the speed of light, which must route through multiple hops,

including routers/switches, then, in our case, must travel a significant

distance via undersea cables, to serve just one request. In our example,

the eastern Australia to US West Coast is about 150ms-ish one way, and

when you access data, you have a request and response within 150ms-ish

latency twice, which leads to about 300ms of latency. This means that if

Figure 2-14. Running a command against Azure Cosmos DB in
MongoDB shell

Chapter 2 azure Cosmos DB overview

26

the application page, while loading, must send 5 requests to a server, 5

requests with roughly 400ms/request × 5 requests/page will be calculated

to 2000ms = 2 seconds of latency, which obviously is too much.

Now, what about deploying individual instances of the application

in Australia and the United States? The user will get the least latency

in accessing the application, but deploying the database in a remote

region will cause huge latency. With each application request, multiple

database roundtrips might have to be performed, and every roundtrip will

accumulate latency, which means the response from the application will

be an accumulation of all the roundtrips to database. In order to reduce

this latency, the database must also be deployed in the region close to the

application, and in this case, two instances are required: one for Australia

and a second for the United States. (See Figures 2-15 and 2-16.)

Figure 2-15. Multi-geo deployment of only application (with a single
roundtrip to the database)

Figure 2-16. Multi-geo deployment of application and database

Chapter 2 azure Cosmos DB overview

27

Now the nightmare begins. In each of the regions, we must have

two replica instances of the database (assuming high availability on

both sides), which means at least two copies per region. Synchronizing

multiple copies will be a tough job that requires a huge management and

monitoring effort.

Azure Cosmos DB has addressed this situation as a forethought

(embedded in its design), wherein with a single instance, you can achieve

high availability and make a geo-replica with a single click. (See Figure 2- 17.)

All replication worries will be taken care of by Azure Cosmos DB.

Figure 2-17. Geo-replication with Azure Cosmos DB

Chapter 2 azure Cosmos DB overview

28

However, there are various aspects one must consider for

geo- replication.

 1. Azure is growing rapidly and expanding its

footprint as fast as possible. Azure Cosmos DB, as

one of the most prioritized services, is designated

as a Ring 0 service, which means that once a newly

added Azure region is ready for business, Azure

Cosmos DB should be available in that region. This

helps to ensure a maximum geo-spread for any

geo- replication scenario.

 2. In Azure Cosmos DB, there is no limit to the

number of regions being added. It will be limited

only by the number of regions Azure has at a given

point in time.

 3. One can add or remove regions for geo-replication

programmatically over the runtime. Azure Cosmos DB

ensures that whenever a new region is selected, the

data will be replicated (within 60 minutes, as defined

in the service-level agreement [SLA]) Refer Figure 2-18.

• The moment you add at least one replica,

automatically you become entitled to a 99.999%

availability SLA from a regular 99.99% availability

SLA. Also, you receive the possibility of failover.

Azure Cosmos DB has manual and automatic

failover. In case of automatic failover, you can set

the priority of the failover region. In case of manual

failover, Azure Cosmos DB guarantees zero data

loss.

Chapter 2 azure Cosmos DB overview

29

 4. Even in case of geo-distribution, Azure Cosmos DB

has guarantees concerning data loss in the event of

auto or manual failover, which is covered under

the SLA.

 Latency
The most important aspect of any database is latency. Azure Cosmos DB

ensures the lowest possible latency, which is constrained by the speed

of light and network reliability. Stronger consistency levels have higher

latency and 99.99% availability. Relaxed consistency will provide lower

latency and 99.999% availability for multiregion instances. Unlike other

databases, Azure Cosmos DB doesn’t ask you to select latency over

availability. It adheres to both and delivers according to the throughput

provisioned.

Figure 2-18. Impact of adding new region

Chapter 2 azure Cosmos DB overview

30

 Consistency
This is a very critical aspect of the database and can affect its quality.

Let’s say if one has selected a certain level of consistency and enables the

geo-replication, there could be a concern over how Azure Cosmos DB will

guarantee it. To address that concern, let’s look at the implementation

closely. It is proven by the CAP theorem that it is impossible for a system

to maintain consistency and availability in cases of failures. Hence, the

system could be either CP (consistency and partition tolerant) or AP

(availability and partition tolerant). The Azure Cosmos DB adheres to

consistency, which makes it CP.

 Throughput
Azure Cosmos DB scales infinitely and ensures predictable throughput. To

scale it would require a partition key, which will segregate the data into a

logical/physical partition, which is completely managed by Azure Cosmos

DB. Based on the consistency level partition set, it will be configured

dynamically, using different topologies (e.g., start, daisy chain, tree, etc.).

In the case of geo-replication, the partition key plays a major role, as each

partition set will be distributed across multiple regions.

 Availability
Azure Cosmos DB offers an availability of 99.99% (a possible unavailability

of 52 minutes, 35.7 seconds a year) for a single region and 99.999% (a

possible unavailability of 5 minutes, 15.6 seconds a year) availability for

multiregions. It ensures availability by considering the upper boundary

of latency on every operation, which doesn’t change when you add a

new replica or have many replicas. It doesn’t matter whether manual

failover is applied or automatic failover is called. The term multi-homing

Chapter 2 azure Cosmos DB overview

31

API (application programming interface) describes failovers transparent

to the application that don’t require the application to be redeployed or

configured after the failover occurs.

 Reliability
Azure Cosmos DB ensures each partition to be replicated and the replicas

that are spread across at least 10 to 20 fault domains. Every write will be

synchronously and durably committed by a majority quorum of replicas

before they revert to a success response. Then asynchronous replication

will occur across multiple regions. This ensures that there is no data loss

in the case of manual failover, and in case of automatic failover, the upper

boundary limit of bounded staleness will be the maximum window for

data loss, which is also covered under the SLA. You can monitor the each

of the metrics covered in the SLA from portal, refer Figure 2-19.

Figure 2-19. Viewing key monitoring metrics for Azure Cosmos DB

Chapter 2 azure Cosmos DB overview

32

 Protocol Support and Multimodal API
Azure Cosmos DB provides multimodal API, which helps developers to

migrate from various NoSQL databases to Azure Cosmos DB, without

changing their application’s code. Currently, Cosmos DB supports SQL

API, MongoDB, Cassandra, Gremlin, and Azure Table Storage API.

In addition to API support, Azure Cosmos DB provides multimodel

implementation. This means that you can store data in various structures,

i.e., document, key-value, columnar, and graph.

 Table Storage API
Azure Table storage is based on the simplest data model, the key-value

pair. Tables store data as collections of entities. An entity is like a row,

and every entity has a primary key and a set of properties. A property is a

name and typed-value pair, such as a column. To get started, click Create a

resource ➤ Databases ➤ Cosmos DB, then fill in the form and hit Create.

For table storage, you must create a database and tables, which then result

in multiple key-value pair-based entities. (See Figure 2-20 for a sample

table storage structure.)

Figure 2-20. Table storage structure

Chapter 2 azure Cosmos DB overview

33

To add an entity, click the arrow in front of TablesDB ➤ click the arrow

in front of the desired table ➤ click Entities, then click Add Entity

(see Figure 2-21).

There are two mandatory properties that will always be part of the

entity: RowKey & PartitionKey (see Figure 2-22). PartitionKey requires

that data be balanced into multiple partitions. RowKey helps to identify

the row uniquely, which is very efficient, if used in a query, as part of the

criteria. TimeStamp, which is uneditable, always has the last modified

server’s datetime.

Figure 2-21. Data Explorer for table storage (selected operations are
circled)

Figure 2-22. Adding an entity in table storage

Chapter 2 azure Cosmos DB overview

34

One can also use .NET, JAVA, NodeJs, Python, F#, C++, Ruby, or REST

API to interact with TableStorage API.

 SQL (DocumentDB) API
Azure Cosmos DB started with a document-based data model and used

Document SQL for query interactions. The document model will define

that the stored data be delivered (against the request) in the form of JSON

documents. (Figure 2-23 illustrates a sample document-oriented structure.)

It helps to reduce the learning curve, if you have some idea of SQL.

The structure of the query would be

SELECT <select_list/comma separated list of fields>

[FROM <from_specification>]

[WHERE <filter_condition>]

[ORDER BY <sort_specification]

Figure 2-23. Document-oriented structure

Chapter 2 azure Cosmos DB overview

35

 FROM Clause

The purpose of this clause is to specify the source, which could be a whole

collection or a subset of one. Some typical examples are “select name from

book,” “select name, isbn from book,” etc. It is possible to use “AS” for alias

in a FROM clause, which is an optional keyword. You can also select the

alias without it, e.g., “select b.name from book as b,” “select b.name from

book b.” Once the alias is used, then all the projected/referenced columns

should specify this via an alias reference, to avoid ambiguous references.

So, the example “select name from book b” is incorrect. Instead, it should

be “select b.name from book b.”

If you don’t want to specify the name of the collection in the FROM

clause, you can use a special identifier called ROOT to refer the collection,

e.g., “select b.name from ROOT b.”

 WHERE Clause

With this clause, one can specify on the source the filter criteria that will

be evaluated against the JSON documents from the source. It must be

evaluated true, to be part of the result set. Often, it is used by the index

layer to capture the matching result set, to get the optimal performance.

An example is “select name from book where ISBN=‘XXX-XX-XXX-XXX-X’,”

using alias “select b.name from book b where ISBN=‘XXX-XX-XXX-XXX-X’.”

 SELECT Clause

This is the mandatory clause and defines the projection of filtered JSON

values from the source, e.g., “select isbn from book,” “select b.isbn from

book b,” or you can select nested values: “select b.chapter.title from book b.”

You can also customize a projection as “select {“BookIdentifier” : b.isbn}

from book b,” or, for multiple values, “select {“BookIdentifier” : b.isbn,

“BookTitle” : b.Title} from book b.”

Chapter 2 azure Cosmos DB overview

36

 ORDER BY Clause

This is an optional clause that is used when you want to sort the result. You

can specify the ASC/DESC keyword, which by default uses ASC (ascending

order). For example, “select b.isbn,b.Title from book b order by b.Title” or

“select b.isbn,b.Title from book b order by b.Title ASC” will have the same

result, and “select b.isbn,b.Title from book b order by b.Title DESC” will

sort the result in descending order.

 Query Example

Let’s consider an example to understand the preceding in detail.

Suppose we have an inventory of books and would like to store the book

information in Cosmos DB–DocumentDB.

A sample record could be as follows:

{

 "id": "test",

 "isbn": "0312577XXX",

 "title": "Cosmos DB",

 "price": "200.22",

 "author": "David C",

 "chapters": {

 "chapterno": "1",

 "chaptertitle": "Overview",

 "tags": [

 "CosmosDB",

 "Azure Cosmos DB",

 "DocumentDB"

]

 }

}

Chapter 2 azure Cosmos DB overview

37

The query to fetch the document using id follows:

SELECT * FROM ROOT c where c.id="test"

The response would be

[

 {

 "id": "test",

 "isbn": "0312577XXX",

 "title": "Cosmos DB",

 "price": "200.22",

 "author": "David C",

 "chapters": {

 "chapterno": "1",

 "chaptertitle": "Overview",

 "tags": [

 "CosmosDB",

 "Azure Cosmos DB",

 "DocumentDB"

]

 },

 "_rid": "aXQ1ANuRMAABAAAAAAAAAA==",

 "_self": "dbs/aXQ1AA==/colls/aXQ1ANuRMAA=/docs/

aXQ1ANuRMAABAAAAAAAAAA==/",

 "_etag": "\"0100191a-0000-0000-0000-5a7d3fbf0000\"",

 "_attachments": "attachments/",

 "_ts": 1518157759

 }

]

Chapter 2 azure Cosmos DB overview

38

 MongoDB API
Azure Cosmos DB supports MongoDB via protocol support, which

simplifies migration from MongoDB to Azure Cosmos DB, as no code

change migration is required. Let’s look at the examples we have

considered to demonstrate DocumentDB.

Let’s open the MongoDB shell and connect to Azure Cosmos

DB. Execute the following command:

mongo <instancename>.documents.azure.com:10255/<databasename>

-u <instancename> -p <accesskey> --ssl

use <collectionname>

Please note that the default behavior of the use command will be

to create a collection if none exists, but it will end up creating a fixed

collection. Therefore, it is recommended that you use an existing collection.

Following is a sample record:

{

 "id": "test",

 "isbn": "0312577XXX",

 "title": "Cosmos DB",

 "price": "200.22",

 "author": "David C",

 "chapters": {

 "chapterno": "1",

 "chaptertitle": "Overview",

 "tags": [

 "CosmosDB",

 "Azure Cosmos DB",

 "DocumentDB"

]

 }

}

Chapter 2 azure Cosmos DB overview

39

The query follows:

db.book.find({});

Response:

{

 "_id" : ObjectId("5a7d59b6d59b290864058b16"),

 "id" : "test",

 "isbn" : "0312577XXX",

 "title" : "Cosmos DB",

 "price" : "200.22",

 "author" : "David C",

 "chapters" : {

 "chapterno" : "1",

 "chaptertitle" : "Overview",

 "tags" : [

 "CosmosDB",

 "Azure Cosmos DB",

 "DocumentDB"

]

 }

}

Please note that _id is the system-generated field, which cannot be

changed and can be used for quick retrieval of the record.

Get the data using chapterno.

db.book.find({"chapters":{"chapterno":"1"}})

Chapter 2 azure Cosmos DB overview

40

The response follows:

{

 "_id": "ObjectId(\"5a7d59b6d59b290864058b16\")",

 "id": "test",

 "isbn": "0312577XXX",

 "title": "Cosmos DB",

 "price": "200.22",

 "author": "David C",

 "chapters": {

 "chapterno": "1",

 "chaptertitle": "Overview",

 "tags": ["CosmosDB", "Azure Cosmos DB", "DocumentDB"]

 }

}

Get the data using the nested field tag.

Query: db.book.find({"chapters.tags": { $in: ["CosmosDB"]

}},{"chapters.tags":1, "_id": 0})

The response follows:

{

 "chapters": {

 "tags": ["CosmosDB", "Azure Cosmos DB", "DocumentDB"]

 }

}

Aggregate the data using the nested field tag.

db.book.aggregate({$project: { count: {$size:"$chapters.tags" }}})

Chapter 2 azure Cosmos DB overview

41

The response follows:

{

 "_t": "AggregationPipelineResponse",

 "ok": 1,

 "waitedMS": "NumberLong(0)",

 "result": [

 {

 "_id": "ObjectId(\"5a7d59b6d59b290864058b16\")",

 "count": 3

 }

]

}

Another query follows:

db.book.find({},{"price":1,"_id":0}).limit(1).sort({price: -1});

The response follows:

{

 "price" : "200.22"

}

 Graph API
Azure Cosmos DB’s Graph API was developed based on the Apache

TinkerPop specification, and anyone using Gremlin can move to Azure

Cosmos DB quickly, without changing the code. For those who are new

to the Graph database structure, it is one that is composed of nodes and

edges. A node is an entity called a vertex, and an edge represents the

relationship between vertices. Both can have an arbitrary number of

properties that represent meta information, known as a properties graph.

Many social networking sites use this type of data structure to define

the relationship between two entities (vertices). For example, if person

Chapter 2 azure Cosmos DB overview

42

A knows person B, wherein person A and person B are the vertex, the

relationship “knows” will be the edge. Person A can have a name, age,

and address as properties, and the edge can have properties such as

commonInterest, etc.

The Azure Cosmos DB Graph API uses the GraphSON format for

returning the result. It is the standard Gremlin format with which to

represent vertices, edges, and properties, using JSON.

To provision an Azure Cosmos DB account for Graph API, click the

Create a resource button ➤ Databases ➤ Cosmos DB, then fill in the

form and specify Graph as the API. Next, open Data Explorer and click

New Graph. Specify the Database ID, Graph ID, Storage Capacity and

Throughput, then hit OK to create. (You must specify the partition key,

if you select unlimited storage capacity.) Now, you must expand the

database, by clicking the arrow adjacent to the database name ➤ expand

the Graph, by clicking the arrow adjacent to Graph Name, then click Graph

(see Figure 2-24). Now you will receive a full-fledged user interface with

which to execute your Gremlin queries.

Figure 2-24. Data Explorer view for Graph (expansion is indicated
by items circled in red)

Chapter 2 azure Cosmos DB overview

43

Now, let’s execute some queries. Replace g.V() in the Execute Gremlin

Query text box and specify the following:

g.addV('John').property('id','person-a').property('name','John

Shamuel')

The preceding will add a person with the name John Shamuel. Next,

hit Execute Gremlin Query (see Figure 2-25).

Figure 2-25. Adding a vertex with some new properties

Execute the same to add person Chris Shamuel (Mr.), Laura Shamuel

(Mrs.), and Cartel Shamuel (Mast.). In order to search these, you can

simply include g.V(), which means “get me all records,” or you can

perform g.V(<id>), to search through the vertex’s ID, or search through

any property, as g.V().has('label', 'John'). (See Figure 2-26.)

Now, let’s add an edge between vertices (John ➤ Chris).

g.V().has('label','John').addE('knows').

property('relation','brother').to(g.V('Chris'))

This will define the edge from John to Chris as brother. You can also

define the opposite for reverse traversal.

Chapter 2 azure Cosmos DB overview

44

To understand the query in detail, see Figure 2-27.

Execute the preceding query for the entire vertex and define the family.

Data Explorer can represent the data in Graph Visual (see Figure 2-28). To

view it in Graph Visual, remove the query and execute the query g.V().

Figure 2-26. Adding edge and its result

Figure 2-27. Query breakdown

Figure 2-28. Data visualization in Graph Visual

Chapter 2 azure Cosmos DB overview

45

Now, you can define the edge between all the vertices to form a family

tree, which looks like Figure 2-29.

Figure 2-29. Family tree visualization using Graph Visual in Data
Explorer

You can also use the Apache TinkerPop Gremlin console. Just

download it from http://tinkerpop.apache.org/. Now navigate to

apache-tinkerpop-gremlin-console-3.2.5/conf and open remote-

secure.yaml, then replace the entire content per Listing 2-2, as follows:

Listing 2-2. Configuration for remote-secure.yaml

hosts: [<Cosmos DB account name>.gremlin.cosmosdb.azure.com]

port: 443

username: /dbs/<database name>/colls/<collection name>

password: <access key>

connectionPool: {

 enableSsl: true

}

Chapter 2 azure Cosmos DB overview

../../../../../tinkerpop.apache.org/default.htm

46

serializer: { className: org.apache.tinkerpop.gremlin.

driver.ser.GraphSONMessageSerializerV1d0, config: {

serializeResultToString: true }}

You must replace <Cosmos DB account name> with the Azure Cosmos

DB account name in question. Replace <databaseID> with Azure Cosmos

DB’s database ID and <GraphID> with Azure Cosmos DB’s graph ID, as

circled in red in Figure 2-30.

Figure 2-30. Database ID and graph ID are circled in red

Figure 2-31. Primary key location circled in red

Also, you must replace <primaryKey> with the Azure Cosmos DB

account primary key, which is located under the Keys option in the menu

at the left-hand side of the screen (see Figure 2-31).

Chapter 2 azure Cosmos DB overview

47

Finally, save and close the file, execute bin/gremlin.bat or

bin/gremlin.sh, then execute the following command (see Figure 2-32 for

the output):

:remote connect tinkerpop.server conf/remote-secure.yaml

At this stage, you are all set to execute the Gremlin queries, and you

can expect the same output here (Figure 2-33).

Figure 2-32. Gremlin console connected to Azure Cosmos
DB–GraphDB API account

Figure 2-33. Execution of the Gremlin queries against the Azure
Cosmos DB–GraphDB API account

Chapter 2 azure Cosmos DB overview

48

To give you more hands-on experience, the following are some more

sample queries in the Gremlin console (remove :>, if executing in Azure

Cosmos DB’s Data Explorer):

 1. Search for a specific person using a name.

Query:

:> g.V().haslabel('name', 'Chris Shamuel')

 2. Traverse the first level and identify all who connect

with the vertex in question.

Query:

:> g.V().has('name', 'Chris Shamuel').outE('child')

 3. Traverse multiple levels on the basis of the

relationship.

Query:

:> g.V().has('name', 'Chris Shamuel').as('x').

both('husband').dedup()

 Cassandra API
This is the most recent introduction in Azure Cosmos DB also supports

the Cassandra API using a Cassandra wire protocol. This means that if

the application is using drivers compliant to CQL v4, which is Cassandra

Query Language (CQL) version 4, the application requires minimal or no

code change to migrate to Azure Cosmos DB.

For those who are new to Cassandra, it is another type of NoSQL

whose goal was to make a database highly available without a single point

of failover. It doesn’t have primary/secondary server roles. Instead, every

Chapter 2 azure Cosmos DB overview

49

server is equivalent and has the capability to add or remove nodes over the

runtime. While writing the book, this API was just being announced and

was not available publicly.

 Elastic Scale
Azure Cosmos DB is infinitely scalable, without losing latency. Scaling has

two variables: throughput and storage. Cosmos DB can scale using both,

and the best part is that there is no need to club these together, so scaling

can be done independent of other parameters.

 Throughput
Increasing compute throughput is easy. One can navigate to the Azure

portal and increase request units (RUs) or use CLI to do it without any

downtime. In case more compute throughput is required, one can scale

up, or scale down, if less throughput is required, without any downtime.

Following is the Azure CLI command that can be used to scale the

throughput:

az cosmosdb collection update --collection-name $collectionName

--name $instanceName --db-name $databaseName --resource-group

$resourceGroupName --throughput $newThroughput

 Storage
Azure Cosmos DB provides two options to configure a collection. One is to

have limited storage (up to 10GB). The other is to have unlimited storage.

In case of unlimited storage, the distribution of data depends on the shard

key provided. I will discuss partitioning in detail later in Chapter 3.

Chapter 2 azure Cosmos DB overview

50

Following is the Azure CLI command that can be used to create a

collection with unlimited storage:

az cosmosdb collection create --collection-name 'mycollection

--name 'mycosmosdb' --db-name 'mydb' --resource-group

'samplerg' --throughput 11000 --partition-key-path '/pkey'

 Consistency
Azure Cosmos DB provides five levels of consistency: strong, bounded

staleness, session, consistent prefix, and eventual.

 Strong
This level of consistency guarantees that a write is only visible after it is

committed durably by the majority quorum of replicas. Please note that

because of the nature of strong consistency, it requires more request units

than other consistency levels. To configure it in the portal, please refer

Figure 2-34.

Figure 2-34. Setting strong consistency as the default consistency in
Azure Portal

Chapter 2 azure Cosmos DB overview

51

 Bounded Staleness

This is a stronger consistency than session, consistent prefix, and eventual

consistency. This level of consistency guarantees that reads may lag writes

by configured versions or prefixes of an item or time interval. So, you can

configure staleness in two ways: the number of versions of the item by

which the reads lag the writes, or the time interval.

Azure Cosmos DB accounts that are configured with bounded

staleness consistency can associate any number of Azure regions with

their Azure Cosmos DB account. This consistency also uses similar RUs as

strong consistency, which is greater than other relaxed consistency levels.

To configure it in the portal, please refer Figure 2-35.

 Session

Session consistency is scoped to a client’s session and is best suited for

applications requiring device/user sessions. It guarantees monotonic

reads, writes, and read your own writes and provides maximum read

throughput, while offering the lowest latency writes and reads. When

you post on social media, for example, and you use eventual consistency

instead of session consistency, you can share your post, but after the

newsfeed page refreshes, it is not guaranteed that you can see your post,

which leads you to post it again, perhaps again, and introduces the

possibility of duplicates. A solution must be built by the developer of the

Figure 2-35. Setting bounded staleness as the default consistency in
the portal

Chapter 2 azure Cosmos DB overview

52

app to handle this, which is not easy. When you use session consistency,

you see your own posts immediately, and the developer doesn’t need to

do anything. Cosmos DB handles that for you. To configure it in the portal,

please refer Figure 2-36.

 Consistent Prefix

This provides group-level consistency. Let’s suppose that multiple writes

are being performed at a certain period, then, instead of replicating

converging them immediately, it waits until there are further writes and

then converges the data in one go. This guarantees that reads never see

writes out of order. E.g., one is writing A, B, and C, so a client will get either

A; A,B; or A,B,C; etc. but never C,A; A,C,B; or B,A; etc.

Azure Cosmos DB accounts that are configured with consistent prefix

consistency can associate any number of Azure regions with their Azure

Cosmos DB instance. This consumes fewer RUs compared to stronger

consistency levels. To configure it in the portal, please refer Figure 2-37.

Figure 2-36. Setting session as the default consistency in the portal

Chapter 2 azure Cosmos DB overview

53

Figure 2-37. Setting consistent prefix as the default consistency in the
portal

 Eventual

This weakest form of consistency helps lowest latency reads and writes.

It ensures that in the absence of any further writes, the replicas within the

group eventually converge.

Azure Cosmos DB accounts that are configured with eventual

consistency can associate any number of Azure regions with their Azure

Cosmos DB. To configure it in the portal, please refer Figure 2-38.

Figure 2-38. Setting eventual prefix as the default consistency in the
portal

Chapter 2 azure Cosmos DB overview

54

Prior to MongoDB 3.4, only strong and eventual consistency was

supported. This was also true, therefore, of the Azure Cosmos DB. The

MongoDB API currently supports both. Session consistency is now

available in MongoDB 3.6.

 Performance
Predefined performance is the utmost requirement of any NoSQL

database, and Azure Cosmos DB ensures it. In Azure Cosmos DB, the

operational latency is considered the primary factor for performance.

The SLAs for Azure Cosmos DB guarantee 10ms reads and 15ms writes

of document-sized 1KB in the same Azure region at the 99th percentile.

In practice, in my experience, it doesn’t go beyond 2–5ms for documents

of the size of 1KB in the same Azure region at the 99th percentile. The

committed latency levels can be verified via Azure Monitor metrics.

There is a metric dedicated to latency. To access it, navigate to Metrics

(from the menu at the left-hand side of the screen) and click the Latency

tab (see Figure 2-39). The data shown in the metric is for the queries

executed against the Graph database (detailed in the preceding “Graph

API” section), and there is a huge gap (positive though it may be) between

the SLA and the actual data. That in the SLA is much higher, and the actual

is of three times less value. I would highly recommend that you perform

the test yourself and compare the results.

Chapter 2 azure Cosmos DB overview

55

If by doing so you note the example at P99 level, we were receiving the

latency under the commitment level.

 Service Level Agreement (SLA)
Azure Cosmos DB is an enterprise-grade NoSQL database. It covers, in

financial-backed SLAs, all the aspects I have explained so far. The SLAs are

categorized as follows.

 Availability SLA
Azure Cosmos DB provides availability to 99.99%, if configured with no

geo-replication, and provides 99.999%, if configured with a minimum of

one additional Azure region. In case something goes wrong on the read

region, there will be no impact on the other regions and no loss of data

available in any other region. However, in case something goes wrong on

the write region, there will be two options available for failover: manual

Figure 2-39. Outcome of 99th percentile latency test

Chapter 2 azure Cosmos DB overview

56

failover and automatic failover. In case of manual failover, the guarantee

for data loss is 100%, which means no data loss. and for automatic failover,

data loss is the upper bound of bounded staleness, which means the

data written to group and not replicated at the disaster. You can monitor

availability through one of the metrics, called Availability (see Figure 2-40).

To ensure durability of each instance of Azure Cosmos DB, each

partition will be replicated across at least 10–20 fault domains. I will

discuss how to ensure minimal or no impact in the application in

Chapter 3.

 Throughput SLA
Azure Cosmos DB generates the error “Throughput failed requests” when

the compute unit is consumed to the maximum configured. If in any case

it generates this error without reaching the upper limit, it is considered an

error rate and calculated against the number of requests made during an

hourly interval. The guarantee of such a case not happening is 99.99%. To

monitor the throughput in Azure Portal, navigate to Metrics ➤ Throughput

tab, refer Figure 2-41.

Figure 2-40. Azure Cosmos DB monitoring metrics for Availability

Chapter 2 azure Cosmos DB overview

57

Figure 2-41. Azure Cosmos DB monitoring metrics to monitor the
throughput

I will be discussing sizing and compute-unit strategy in Chapter 7,

which will help ensure that no such errors occur and, if they do, how to

obviate them.

Chapter 2 azure Cosmos DB overview

58

Figure 2-42. Azure Cosmos DB monitoring metrics to monitor the
consistency on the portal

 Consistency SLA
This is the simplest category of SLA to understand. Let’s imagine that

you have selected strong consistency and have received phantom rows

(uncommitted rows), which will be in violation of this category. Azure

Cosmos DB considers such instances via a consistency violation rate, by

which a successful request doesn’t adhere to the configured consistency,

which will be divided against the total number of requests made. The

guarantee of such cases not occurring is 99.99%. To monitor it in Azure

Portal, navigate to Metrics ➤ Consistency, refer Figure 2-42.

Chapter 2 azure Cosmos DB overview

59

Figure 2-43. Azure Cosmos DB monitoring metrics to monitor the
latency on the portal

 Latency SLA
This is how latency applies to the application, using Azure Cosmos DB SDK

and TCP connectivity. If Azure Cosmos DB doesn’t meet specified latency,

it considers such a response instance to be included in “Excessive Latency

Hours.” The SLA commits to 99.99% for Excessive Latency Hours–free

responses. The guarantee toward getting reads is <10ms and <15ms for writes.

To monitor Latency metrics on Azure Portal, navigate to Metrics ➤ Latency,

refer Figure 2-43.

I will discuss performance best practices in Chapter 7.

Conclusion
Azure Cosmos DB is globally distributed and multi-model database.

Which can be elastically scale throughput and storage (independently)

across any number of Azure’s geographic regions. It also offers throughput,

latency, availability, and consistency guarantees with comprehensive

SLAs at lowest total cost of ownership (TCO). I will detail about each of the

functionality in subsequent chapters.

Chapter 2 azure Cosmos DB overview

61© Manish Sharma 2018
M. Sharma, Cosmos DB for MongoDB Developers,
https://doi.org/10.1007/978-1-4842-3682-6_3

CHAPTER 3

Azure Cosmos DB
Geo-Replication
Availability of the database is of utmost importance to any application’s

experience. In cases where the user engagement is critical, and the

availability of the database in data-driven application is most important, one

must ensure the availability and scalability of the database. Among examples

of data-driven applications could be the following: an e-commerce

application with a plethora of easy-to-use and marquee features, going

down every time a user tries to make a purchase, because the database is

not available; a billing solution for a hospital that leaves patients standing in

line to make payments, owing to a database instance not being available; or

a transport company with footprints across the globe seeking to access the

system, but apart from that at the main location, the system performs badly,

owing to latency issues. So, how do you ensure that a database is available?

How do you ensure that the database is always deployed nearest to the

relevant application? And how do you achieve the lowest possible latency?

In this chapter, I will attempt to answer the queries related to database

availability. Also, I will go through Azure Cosmos DB’s global distribution

capability and discuss how it can help address availability challenges.

62

 Database Availability (DA)
To ensure database availability, we must ensure availability of the instance

running the database. We can achieve this by setting up high availability

(HA). This simply means that more than two instances should be running

a given workload. Running two or more instances of the same database

will be a tough job, as all the instances should be in sync, such that if one

instance goes offline, the second instance will be up and running, with

all the required data. This can be achieved by data replication, which is of

two types: master/slave and master/master. In the case of master/slave

data replication, there is one main database instance, which can perform

read and write transactions, and second or subsequent instances will

have a copy of the same data as the main instance but perform only read

transactions. In master/master replication, there is no main instance. All

the instances have equal privileges and can perform the read and write

transactions.

 MongoDB Replication
In MongoDB, high availability (master/slave-based architecture) can be

configured via a replica set. In a replica set, data in the primary instance

will be replicated in secondary instances. The primary instance serves all

the write and read transactions, and the secondary node(s) serves read

transactions. The secondary nodes are further divided into two types:

data-bearing nodes and arbiter nodes. Let’s look at some of their

low-level details.

 Data-Bearing Nodes
Data-bearing nodes are those that carry the data set. All healthy data-

bearing nodes will continuously send pings to each other to check their

state of health. The replication of data from primary nodes occurs by

Chapter 3 azure Cosmos DB Geo-repliCation

63

copying the oplog of the primary node and applying it to a secondary

node’s data sets. If the primary node is unavailable, an eligible secondary

node will hold an election to choose itself as the new primary. The first

secondary node that holds the election and is elected by most secondaries

will be promoted as the new primary node. While the election is in

progress, none of the nodes can accept writes and read queries. There may

be priority 0 (P-0) nodes that will not be able to become primary. These

nodes serves as a cold backup or secondary means of disaster recovery,

also called a standby mode, refer Figure 3-1.

Voting in the election is not a right provided to every secondary node.

A maximum of only seven secondary nodes can vote. A non-voting node

will have the configuration of votes = 0 and priority = 0, refer Figure 3-2 for

complete flow.

Figure 3-1. Replication between primary and secondary nodes

Chapter 3 azure Cosmos DB Geo-repliCation

64

 Arbiter Nodes
Arbiter nodes exist to provide an uneven number of voting members,

without the overhead of an additional replicated data set node. Unlike

data-bearing nodes, arbiter nodes don’t contain a copy of the data;

therefore, they cannot become primary nodes. Arbiter nodes can only vote

in elections and perform health checks, refer Figure 3-3. They always have

the configuration votes = 1 and priority = 0.

Figure 3-2. Failover and election of the primary node (Arbiter is
detailed in the following “Arbiter Nodes” section.)

Chapter 3 azure Cosmos DB Geo-repliCation

65

Let’s look at the connection string that must be modified for the

replication environment (Listing 3-1).

Listing 3-1. Connection String for MongoDB with replicaSet and

Multiple Host Names

MongoClient.connect("mongodb://xxx:30000,abcd:30001/db_prod?rep

licaSet=ProdReplication", function(err, db) {

.....

.....

}

If you look at the connection string, it is different than usual. I have

specified multiple end points here that showcase the possibility of

specifying named nodes, which will help in connecting to specific nodes in

the replicaSet. However, this is not recommended, as they increase the

overhead to validate the host. Instead of specifying the host, you should

specify the name of the replicaSet, which is enough to automatically

navigate to a healthy node (primary or secondary).

As of now, MongoDB doesn’t support multi-master replication,

wherein every node can handle read and write transactions.

Figure 3-3. Arbiter in overall replication

Chapter 3 azure Cosmos DB Geo-repliCation

66

HA is valid for one geo-region, but what if that geo-region experiences

a natural disaster or a data center–wide outage and all the instances

become unavailable? It is important, therefore, to consider creating

replica instances for other geo-regions as well. This is called disaster

recovery (DR). To set up disaster recovery, MongoDB offers asynchronous

replication, which helps to replicate the data, even in cases of higher

latency, but only in eventual consistency mode. This means a minimum

of 4x instances per instance (2x for HA and 2x for DR) are required, which

must be replicated across the data centers (to ensure HA in both sides).

Apart from HA and DR, if an application seeks to spread across

geographical regions and requires local access to a database which will

reduce the latency and increase the application’s performance, we need

2x instance in each region. If we had to manage a large data set, we would

have to split the instance into multiple subinstances, called shards/

partitions (see Chapter 5 for further details), then each shard/partition

would require individual HA/DR/multi-geo deployment consideration.

This would require a herculean effort to deploy—replicating data

and maintaining its availability in each data center. Even the slightest

misconfiguration could wreak havoc. Therefore, to achieve multiple

instances correctly, you must hire consultants or specialized resources.

This will also mean that an army of DevOps professionals must keep an

eye 24/7 on all the instances, and, even then, if something goes wrong,

there is no SLA (service level agreement)–based commitment.

So, far I have explained how replication is performed in MongoDB,

which is quite cumbersome and requires excessive effort to deploy/

manage. But not to worry, Azure Cosmos DB is to the rescue. It

automatically maintains all copies in a single region and, upon

configuration, multiple other regions.

Chapter 3 azure Cosmos DB Geo-repliCation

67

 Azure Cosmos DB Replication
Azure Cosmos DB provides HA, DR, and geo-replication out of the box

with an SLA. It covers availability, throughput, consistency, and latency

as well. Every instance has a preconfigured structure for HA. Therefore,

there is no need for explicit configuration. For DR and geo-replication, one

can add read and write regions by navigating to the Azure portal ➤ Azure

Cosmos DB Account ➤ Replicate Data Globally, then clicking the circled +

icon highlighted on the map and then clicking Save (see Figure 3-4).

Alternatively, you can click the Add Region button just beneath the list

of regions. You can select as many regions as you want (up to the limit of

Azure’s Region availability).

Figure 3-4. Configuring geo-distribution via the Azure portal

Chapter 3 azure Cosmos DB Geo-repliCation

68

Azure Cosmos DB supports multiple geo-replicated master nodes,

which will make the application globally distributed. The global

distribution helps in architecting applications with low latency access, as

it allows serving write and read requests closer to the application. It also

increases the application’s overall user experience. See Figures 3-5 and 3-6

for the examples of latency impact before and after geo-distribution.

Figure 3-5. Latency before global distribution

Chapter 3 azure Cosmos DB Geo-repliCation

69

Another way to add an Azure Cosmos DB account with multiple

regions is to use Azure’s command-line interface (CLI). (See Listing 3-2)

Listing 3-2. Configuring Multiple Regions While Creating an Azure

Cosmos DB Instance Using a CLI

az group create --name mytestresourcegroup --location

southindia

az cosmosdb create --name mycosmosdbacct --resource-group

mytestresourcegroup --default-consistency-level Session

--enable-automatic-failover true --kind MongoDB --locations

"South India"=0 "Central India"=1 "West India"=2 --tags kiki

Figure 3-6. Optimal latency scenario after configuring global
distribution

Chapter 3 azure Cosmos DB Geo-repliCation

70

We must provide a list of locations, in addition to the failover priority.

The priority should be unique in sequence, as is indicated in the preceding

refer Listing 3-3. A priority of 0 <= indicates the write region, and a priority

of >0 indicates the read region (unlike in MongoDB, in which the priority

-0 means that the instance will never become primary).

Listing 3-3. CLI Command to Change the Failover Sequence in

Azure Cosmos DB

az cosmosdb failover-priority-change --failover-policies "South

India"=1 "Central India"=0 "West India"=2 --name mycosmosdbacct

--resource-group mytestresourcegroup

Please note with the preceding command we are also changing

the write region from "South India" to "Central India". Figure 3-7

illustrates the change.

Chapter 3 azure Cosmos DB Geo-repliCation

71

Figure 3-7. Updated map, reflecting the change

Chapter 3 azure Cosmos DB Geo-repliCation

72

 Auto-Shifting Geo APIs
In MongoDB, it is recommended that you provide a replicaSet reference,

instead of specifying the host, such that MongoDB can manage the failover

implicitly. The same is applicable to Azure Cosmos DB. There is absolutely

no need to specify the host while programming. Instead, you can simply

copy and paste the connection string available at the portal, which does

have a reference of replicaSet. To get the connection string, navigate to

Azure Cosmos DB Account ➤ Connection String and copy the primary

or secondary connection string (see Figure 3-8, refer Listing 3-4 for

Connection String).

Figure 3-8. Gettingthe connection string from the Azure portal
(Primary and secondary connection strings are indicated by a red line.)

Chapter 3 azure Cosmos DB Geo-repliCation

73

Listing 3-4. Connection String Depicting the replicaSet

mongodb://<CosmosDBAccountName>:<primary or secondary

key>@<CosmosDBAccountName>.documents.azure.com:10255/?ssl=true&

replicaSet=globaldb

In the case of manual or automatic failover, Azure Cosmos DB will

handle it in the background and be completely transparent, without the

need to change anything in the code.

The beauty of Azure Cosmos DB is that its data can be replicated to

almost all Azure regions, as it is a Ring 0 service. Ring 0 services will be

available to all the Azure regions as soon as they hit general availability

(GA). As of now, Azure Cosmos DB supports multiple write and read

regions, to curb latency for geo-distributed usage of the application.

Let us create a plain vanilla Hello World example in .NET using

MongoDB. To create this, take the following steps:

 1. Open Visual Studio ➤ New Project ➤ Visual C# ➤

Console application, then hit OK.

 2. Go to the Package Manager Console and specify “Install-

Package MongoDB.Driver,” then hit Enter. This will add

the necessary MongoDB client libraries for .NET.

 3. Add a class, name it EventModel, and replace

the EventModel’s class code with the following

(Listing 3-5):

Chapter 3 azure Cosmos DB Geo-repliCation

74

Listing 3-5. Code for EventModel Class

/// <summary>

/// Model defined for Event Message generated from sensors

/// </summary>

public class EventModel

{

 /// <summary>

 /// Default ID

 /// </summary>

 public MongoDB.Bson.BsonObjectId _id { get; set; }

 /// <summary>

 /// Site information

 /// </summary>

 public int SiteId { get; set; }

 /// <summary>

 /// Device information installed for a site

 /// </summary>

 public int DeviceId { get; set; }

 /// <summary>

 /// Sensor information installed in Device

 /// </summary>

 public int SensorId { get; set; }

 /// <summary>

 /// Temperature Reading

 /// </summary>

 public decimal Temperature { get; set; }

 /// <summary>

 /// Overall Health of the Device

 /// </summary>

 public string TestStatus { get; set; }

Chapter 3 azure Cosmos DB Geo-repliCation

75

 /// <summary>

 /// Message TimeStamp

 /// </summary>

 public DateTime TimeStamp { get; set; }

}

 4. Open Program.cs and add following usings:

using MongoDB.Driver;

using System.Configuration;

 5. Now replace the function static main with the

following code (Listing 3-6):

Listing 3-6. Code to Specify the Nearest Region to Connect With

static void Main(string[] args)

 {

 // ConnectionString, name of database & collection

to connect

 // All those values will be acquired from App.

config's setting section

 string connectionString = ConfigurationManager.AppS

ettings["ConnectionString"];

 string databaseName = ConfigurationManager.

AppSettings["DatabaseName"];

 string collectionName = ConfigurationManager.

AppSettings["CollectionName"];

 //Mongo client object

 MongoClient client = new

MongoClient(connectionString);

 //Switch to specific database

Chapter 3 azure Cosmos DB Geo-repliCation

76

 IMongoDatabase database = client.

GetDatabase(databaseName);

 // While selecting the collection, we can specify

the read preference

 MongoCollectionSettings collSettings = new

MongoCollectionSettings()

 {

 ReadPreference = new ReadPreference(ReadPrefere

nceMode.Secondary)

 };

 //Adding a record into primary instances

 var messageId = new MongoDB.Bson.BsonObjectId(new

MongoDB.Bson.ObjectId());

 var deviceId = new Random(1).Next();

 IMongoCollection<EventModel> productCollection =

database.GetCollection<EventModel>(collectionName,

collSettings);

 productCollection.InsertOne(new EventModel { _id

= messageId, SiteId = 1, DeviceId = deviceId,

SensorId = 1, Temperature = 20.05M, TestStatus =

"Dormant", TimeStamp = DateTime.Now });

 EventModel result = null;

 //Loop through till the record gets replicated to

secondary instance

 while (result == null)

 { // Reading the newly inserted record from

secondary instance

 result = productCollection.

Find<EventModel>(x => x.DeviceId == deviceId).

FirstOrDefault<EventModel>();

 }

Chapter 3 azure Cosmos DB Geo-repliCation

77

 Console.WriteLine("Message Time:" + result.

TimeStamp.ToString("dd/mm/yyyy hh:mm:ss"));

 Console.Read();

 }

 6. Open App.config and beneath </startup>, add the

following code (Listing 3-7):

Listing 3-7. Configuration Changes in App.config

<appSettings>

 <add key="ConnectionString"

 Value="<Replace with ConnectionString"/>

 <add key="DatabaseName" value="<Replcace with name of

Database>"/>

 <add key="CollectionName" value ="<Replace with name of

collection>"/>

 </appSettings>

Once you run the code, it will insert the record in one region and fetch

the record from another region, then give you the timestamp of the last

inserted record, refer Figure 3-9. You will hardly see a NULL reference or

looping construct being called more than once, which will prove the point

of lowest latency in global distribution.

Figure 3-9. Output of the MongoDB application connecting Azure
Cosmos DB

Chapter 3 azure Cosmos DB Geo-repliCation

78

 Consistency and Global Distribution
Consistency is one of most crucial factors of Azure Cosmos DB, and

global distribution is no exception. The write region will acknowledge to

the writes only if it is able to write to an adequate quorum, which helps

Azure Cosmos DB to reduce the data loss in case of failure. Data will be

replicated for each partition, and assurance of replication will be achieved

at a granular level, refer Figure 3-10.

Azure Cosmos DB’s respect for consistency levels is specified as default

consistency or via code, while connecting to Cosmos DB. Against each

consistency level, the behavior of Azure Cosmos DB is as follows:

Figure 3-10. Replication of data at partition level

Chapter 3 azure Cosmos DB Geo-repliCation

79

• Strong consistency: The write region will acknowledge

this once it is able to write to all regions. It is one of the

costliest operations in terms of number of RUs being

consumed. In this case, the synchronous replication

increases the overall latency.

• Bounded staleness: This is preferred if you require

strong consistency with geo-replication. It will have a

lower cost impact compared to strong consistency on

writes. It will replicate the data async, and the time lag

will be equivalent to the specified interval. In the case

of automatic failover, the guarantee of data loss refers to

this interval.

• Session consistency: In this case, the scope of

consistency is limited to the user’s session, and

replication will be performed asynchronously.

• Consistent prefix: This is another form of eventual

consistency, except that it maintains the sequence of

writes during the replication.

• Eventual: This form of consistency is always the fastest

and cheapest, because the cost is less, and the latency

is lower.

 Conclusion
In this chapter I have addressed various aspects of geo-replication in Azure

Cosmos DB and touched on various aspects that are specific to Azure

Cosmos DB. As we have seen through numerous examples, Azure Cosmos

DB–MongoDB API doesn’t introduce new jargon or syntax, which reduces

the learning curve during the migration from MongoDB. In subsequent

chapters, I will cover indexing, sizing, partition, and other key scenarios

that may refer to this chapter.

Chapter 3 azure Cosmos DB Geo-repliCation

81© Manish Sharma 2018
M. Sharma, Cosmos DB for MongoDB Developers,
https://doi.org/10.1007/978-1-4842-3682-6_4

CHAPTER 4

Indexing
Indexing is an inherent part of any database, so it is with MongoDB.

Indexing data is necessary to help reduce the scan overhead when finding

the values, for which there is a proverbial, “needle in a haystack.” In this

chapter, I will discuss how indexing works, indexing policies, possibilities

of customization, and indexing optimization.

 Indexing in MongoDB
In MongoDB, users must define which path is to be indexed, and how.

This decision defines the performance of the query. However, indexes

have their own overhead. This creates a separate parallel tree structure

that consumes RAM, storage, and CPU while creating/updating/deleting

documents. Therefore, it’s important to make sure the maximum usage

of the index, but in practice, there might be some queries that don’t use

indexes. In such cases, MongoDB performs collection scans, which will

result in un-optimal performance. Such scenarios can be identified by

using the explain() method in MongoDB.

By default, MongoDB has an _id field with a unique index to identify

documents specifically. This unique index cannot be dropped. Distinct

types of indexes exist in MongoDB that serve different purposes, including

single field, compound, multikey, geospatial, text, and hashed indexes.

Let’s explore each of them.

82

 Single Field Index
This, the simplest type of index, is applied to one field with the sort order.

Whenever a query is executed, MongoDB will use this index, or, in some

cases, it can use an intersection as well, if more than one indexed field is

specified. Refer to Listing 4-1 for details.

Listing 4-1. Sample Document

{

 "_id" : ObjectId("5ae714472a90b83cfcf650fc"),

 "SiteId" : 0,

 "DeviceId" : 16,

 "SensorId" : 9,

 "Temperature" : "20.9",

 "TestStatus" : "Pass",

 "TimeStamp" : {

 "$date" : 1522501431032

 },

 "deviceidday" : "163/31/2018"

}

Now, connect to the MongoDB shell and create a single key index

(Listing 4-2) with a sort order of 1, which indicates ascending order. To

create a single key index with a descending sort order, use a value of -1.

Chapter 4 IndexIng

83

Listing 4-2. Command and Output to Create a Single Key Index

>db.events.createIndex({DeviceId: 1});

Output:

{

 "createdCollectionAutomatically" : true,

 "numIndexesBefore" : 1,

 "numIndexesAfter" : 2,

 "ok" : 1

}

Note In this case, the sort order doesn’t matter, as the MongodB
engine can perform reverse lookup as well.

 Query Using an Index

We will use the explain() method to extract the query plans and

execution statistics about the query plans (see Listing 4-3).

Listing 4-3. Command to Be Executed (explain() is added to

investigate the usage of the index; refer to Figure 4-1 for output)

>db.events.find({DeviceId:16}).explain();

Chapter 4 IndexIng

84

Figure 4-1. Output of explain() (the usage of the index is
highlighted)

Chapter 4 IndexIng

85

In the explain() method, under winningPlan ➤ inputStage ➤ stage,

are the following five possible operations:

 1. COLLSCAN: This represents the query that is to

perform the collection scan.

 2. IXSCAN: This represents the usage of the index

(scanning index keys).

 3. FETCH: This represents the operation retrieving the

documents.

 4. SHARD_MERGE: This represents the merging of results

from the shards.

 5. SHARDING_FILTER: This filters out the orphan

documents from shards.

As you can see in Figure 4-1, the winningPlan ➤ stage using IXSCAN

shows that the query is using indexes.

 Query Not Using an Index

Now, let’s consider an example in which the field we have selected is not

using an index. See Listing 4-4 for details.

Listing 4-4. Execution of find with explain() and Its Output

> db.events.find({ "SensorId": 9 }).explain();

Output:

{

 "queryPlanner": {

 "plannerVersion": 1,

 "namespace": "db.events",

 "indexFilterSet": false,

 "parsedQuery": {

Chapter 4 IndexIng

86

 "SensorId": {

 "$eq": 9

 }

 },

 "winningPlan": {

 "stage": "COLLSCAN",

 "filter": {

 "SensorId": {

 "$eq": 9

 }

 },

 "direction": "forward"

 },

 "rejectedPlans": []

 },

 "serverInfo": {

 "host": "xx",

 "port": 27017,

 "version": "3.6.4",

 "gitVersion": "xx"

 },

 "ok": 1

}

Now, if you look closely, this time we have taken the field SensorId,

which is not indexed, and winningPlan ➤ stage depicts the operation

COLLSCAN.

Chapter 4 IndexIng

87

 Compound Index
These indexes are formed by clubbing more than one field. In our example,

we will create a compound index with the fields SiteId and DeviceId (see

Listing 4-5).

Listing 4-5. Creating a Compound Index and Its Output

> db.events.createIndex({SensorId:1, deviceidday:-1});

Output:

{

 "createdCollectionAutomatically" : false,

 "numIndexesBefore" : 3,

 "numIndexesAfter" : 4,

 "ok" : 1

}

Now, in the preceding example, the sorting order is very

important. Let’s consider a couple of other examples, such as when

a query specifies a sort order as db.events.find({},{sensorId:-1,

deviceidday:1}) or db.events.find({},{sensorId:1,

deviceidday:-1}). In such case, the index will be effective, but if

you specify db.events.find({},{sensorId:-1, deviceidday:-1})

or db.events.find({},{sensorId:1, deviceidday:1}), the index

will not be used, because the MongoDB engine will not have such

combinations in its index entry.

The second most important consideration is the order of the fields in

an index, which should be as close as possible to your usage.

Chapter 4 IndexIng

88

 Multikey Index
These indexes are for fields that hold an array value. MongoDB will create

an index entry for each value in the field. It can be constructed for scalar

values (number, string, etc.) or for nested documents. The MongoDB

engine automatically creates a multikey index if it senses the field has array

or nested documents. So, the syntax is the same as for a compound or

single field index.

 Geospatial Index
MongoDB is capable of supporting 2D geospatial data and has two

different indexes: one for planar geometry and a second for spherical

geometry search. The first is mostly for legacy data, which is stored as

legacy coordinates, instead of GeoJSON.

GeoJSON is an encoding format for a variety of geospatial data

structures. It supports various geometry types, e.g., Point, LineString,

Polygon, MultiPoint, MultiLineString, and MultiPolygon.

Let us try it out (see Listing 4-6).

Listing 4-6. Creation of a 2dsphere Index

> db.geo2dcoll.createIndex({ location: "2dsphere" })

Output:

{

 "createdCollectionAutomatically" : true,

 "numIndexesBefore" : 1,

 "numIndexesAfter" : 2,

 "ok" : 1

}

Now, let’s insert some data (Listing 4-7).

Chapter 4 IndexIng

89

Listing 4-7. Inserting Some Coordinates in the 2dsphere Index

> db.geo2dcoll.insertOne({location: {type: "Point",

coordinates: [28.354153, 77.373746]}});

> db.geo2dcoll.insertOne({location: {type: "Point",

coordinates: [28.370091, 77.315462]}});

To find the nearest point within 6.5 kilometers, refer to Listing 4-8.

Listing 4-8. Search for Nearest Point

>db.geo2dcoll.find({ location: { $near: { $geometry:

{ type: "Point", coordinates: [

28.354153, 77.373746] }, $maxDistance:

6500, $minDistance: 300 } } });

Output:

{ "_id" : ObjectId("5afdc37f83ae6a55a8f185ba"), "location" : {

"type" : "Point", "coordinates" : [28.370091, 77.315462] } }

Let’s now try using the 2D index. Refer to Listing 4-9 to create the index.

Listing 4-9. Creation of a 2D Index

> db.geo2dcoll1.createIndex({ location: "2d" })

{

 "createdCollectionAutomatically" : true,

 "numIndexesBefore" : 1,

 "numIndexesAfter" : 2,

 "ok" : 1

}

Insert some locations (Listing 4-10).

Chapter 4 IndexIng

90

Listing 4-10. Inserting Some Sample Locations

> db.geo2dcoll1.insertOne({location:[28.370091, 77.315462]})

> db.geo2dcoll1.insertOne({location:[28.354153, 77.373746]})

To execute the command to search another location about 6500 meters

from one point, follow the code in Listing 4-11.

Listing 4-11. Finding All Locations Within 6500 Meters

> db.runCommand({ geoNear: "geo2dcoll1", near: [28.354153,

77.373746], $maxDistance: 6500 })

Output:

{

 "results" : [

 {

 "dis" : 0,

 "obj" : {

 "_id" : ObjectId("5afdc6ee83ae6

a55a8f185bc"),

 "location" : [

 28.354153,

 77.373746

]

 }

 },

 {

 "dis": 0.060423873593142,

 "obj": {

 "_id": "ObjectId(\"5afdc6d383ae6a55a8f185bb\")",

 "location": [

 28.370091,

 77.315462

Chapter 4 IndexIng

91

]

 }

 }

],

 "stats" : {

 "nscanned" : 31,

 "objectsLoaded" : 2,

 "avgDistance" : 0.030211936796571,

 "maxDistance" : 0.060423873593142,

 "time" : 1858

 },

 "ok" : 1

}

In the preceding case, there is a minimum distance feature available

that leads to getting unnecessary results. Certainly, such results will

consume time and resources unnecessarily.

Another major discrepancy is accuracy. If two points are far apart, you

can see the difference very easily.

 Text Index
This is a special of type of index that helps in performing full-text search.

It does support basic search functionalities such as stemming, stop words,

ranking, phrase search, keyword search, etc. This type of index supports

approximately 21 languages. However, if you are looking to support

synonyms, lowercase analyzers, language-specific rules, stop token

filters, HTML stripping, or more advanced scoring sets, use the search

technologies, e.g., ElasticSearch, Solr, etc.

Let’s create a text index. The code in Listing 4-12 can be used to create

a text index for collecting articles.

Chapter 4 IndexIng

92

Listing 4-12. Creating a Text Index for Articles Collection

>db.articles.createIndex({body: "text", abstract: "text"})

Output:

{

 "createdCollectionAutomatically" : true,

 "numIndexesBefore" : 1,

 "numIndexesAfter" : 2,

 "ok" : 1

}

Now that the playing field is ready, let’s push the data. The code in

Listing 4-13 introduces two records for collecting articles in the collection.

Listing 4-13. Inserting Two Records for Articles Collection

> db.articles.insertOne({body: "Quick brown fox jumps over the

little lazy dog.", abstract: "this is the abstract for testing

purpose"});

> db.articles.insertOne({body: "This is quickly created text

for testing", abstract: "article on my cat"});

The data is now pushed, let’s search it (see Listing 4-14).

Listing 4-14. Searching for “fox” in the Entire Collection. (A textscore

[relevance score] will be displayed in the score field output.)

> db.articles.find({$text: {$search: "fox"}}, {score: {$meta:

"textScore"}}).sort({score:{$meta:"textScore"}})

Output:

{ "_id" : ObjectId("5afd9ad797a3819f3ba91ba2"), "body" :

"Quick brown fox jumps over the little lazy dog.", "abstract"

: "this is the abstract for testing purpose", "score" :

0.5714285714285714 }

Chapter 4 IndexIng

93

 Hashed Index
This type of index is used for sharding a database that uses a hashing

function to hash the value of the field, to distribute data across shards.

The most important thing to keep in mind in hashed indexes is that they

don’t support multikey indexes, and an application is not required to

know about the hash function, as the MongoDB database engine does the

necessary conversions automatically.

Use the code in Listing 4-15 to create a hashed index.

Listing 4-15. Creating a Hashed Index

> db.articles.createIndex({ _id: "hashed" })

Output:

{

 "createdCollectionAutomatically" : false,

 "numIndexesBefore" : 2,

 "numIndexesAfter" : 3,

 "ok" : 1

}

 Indexing in Azure Cosmos DB
Having so many types of indexes and then selecting and managing them

can be a headache. What if we could offload all our worries? There is

an answer. It is none other than Azure Cosmos DB. It will solve all your

indexing worries by automatically indexing everything (by default, the

indexing is enabled on all fields), whatever you push, so it will help to

reduce the cost per read. It has special indexes for spatial data, unique

indexing capabilities that you can define selectively, arrays, nested

documents, and, most important, it does sharding automatically. (See

Chapter 5 for further details.) This makes Azure Cosmos DB a completely

schema-free NoSQL database engine.

Chapter 4 IndexIng

94

Now, click the down arrow adjacent to Scale, which allows you to focus

specifically on Settings (see Figure 4-3).

It also has the _id field by default, with a unique index and the option

of designating additional fields to be unique. While writing this book, the

text index and explain methods were not supported. The replacement

of text requires a more sophisticated search, called Azure Search, which

is readily available to provide a better search experience with minimal

management effort.

Now, let’s see how the magic of indexing is configured. Navigate to

DataExplorer ➤ <<Database Name>> ➤ <<Collection Name>> ➤ Scale &

Settings. The output is shown in Figure 4-2.

Figure 4-2. Scale & Settings page

Chapter 4 IndexIng

95

Figure 4-3. Scale & Settings page, with the focus only on Settings

Now, let’s look first at the setting for Time-To-Live (TTL) indexes.

 TTL Indexes
In cases where-in deletion of historical data is required, TTL indexes are

called for. A common use case is time series data that has more significance

than the latest data. While there is a compute designed to delete older

data in MongoDB (in the case of TTL), in Azure Cosmos DB, it doesn’t

consume the slightest RUs. TTL can be applied to a document as well as at

the collection level, but at the time of writing this book, with Azure Cosmos

DB–MongoDB API, it is only possible to apply TTL at the collection level.

To use this feature, you must set indexingMode to other than none. Note,

too, that update and delete operations are supported in TTL.

Chapter 4 IndexIng

96

Now it’s time to use the same MongoDB shell for Cosmos DB. Open

the shell and execute the code in Listings 4-16 and 4-17.

Listing 4-16. Connecting Azure Cosmos DB Account from

MongoDB Shell

>sudo mongo <CosmosDBAccount>.documents.azure.

com:10255/<dbname> -u <CosmosDBAccount> -p <primary/secondary

key> --ssl --sslAllowInvalidCertificates

Listing 4-17. Create TTL Index Using the Shell Command

globaldb:PRIMARY> db.tscollection.createIndex({ "_ts": 1 }, {

expireAfterSeconds: 3600 })

Output:

{

 "createdCollectionAutomatically" : true,

 "numIndexesBefore" : 1,

 "numIndexesAfter" : 2,

 "ok" : 1

}

Other indexes are supported by Azure Cosmos DB, which helps in

handling specific use cases. We’ll explore some of these in more detail in

the subsequent sections of this chapter.

 Array Indexes
These types of indexes address query optimization for fields that consist of

array values. Each array value is indexed individually. In MongoDB, there

is no need for you to write a separate index for each array. If a field consists

of an array, it is included in an array index. For path strings, you must

specify the path of the array index, and it will index it like an array index.

Chapter 4 IndexIng

97

"path" : /field/[]/?

{"field.tag" : "value"}

{"field.tag" : {$lt : 100 } }

 Sparse Indexes
These indexes consist only of entries for documents that contain the

specified field. As MongoDB can have different fields per document,

it is common that some fields may be present only in a subset of the

documents. Sparse indexes allow for the creation of smaller, more efficient

indexes, when fields are not present in all documents.

Let’s see an example (Listing 4-18).

Listing 4-18. Defining a Sparse Index

db.addresses.createIndex({ "xmpp_id": 1 }, { sparse: true })

Next, let us explore the support for unique indexes in Azure Cosmos DB.

 Unique Indexes
These types of indexes help to avoid duplicate values in a field or

combination of fields. An error will be generated upon insertion of a

duplicate value. In the case of an unlimited collection, the duplication is

checked within the scope of the logical partition, and once the unique key

index is created, it is not possible to modify the index, unless the container

is re-created. A maximum of 16 fields or field paths can be specified in 1

constraint, and a maximum of 10 constraints can be specified in each unique

key. At the time of writing, sparse unique key constraints are not supported,

and missing values are treated as NULL and checked against the unique

constraint. An example of a unique key constraint follows (Listing 4-19):

Chapter 4 IndexIng

98

Listing 4-19. Example of Unique Key Constraint

globaldb:PRIMARY> db.collection.createIndex({ "Address-1": 1,

"City": 1, "State": 1 }, { "unique": true })

In next section, I’ll delve further into Cosmos DB’s indexing

configuration.

 Custom Indexing
At its portal, Azure Cosmos DB reveals the configuration of indexes as a

JSON, which we have seen in other settings (see Figures 4-2 and 4-3). Let

us copy the JSON here (Listing 4-20) in detail.

Listing 4-20. Default Indexing Configuration

{

 "indexingMode": "consistent",

 "automatic": true,

 "includedPaths": [

 {

 "path": "/*",

 "indexes": [

 {

 "kind": "Range",

 "dataType": "Number",

 "precision": -1

 },

 {

 "kind": "Range",

 "dataType": "String",

 "precision": -1

 },

Chapter 4 IndexIng

99

 {

 "kind": "Spatial",

 "dataType": "Point"

 },

 {

 "kind": "Spatial",

 "dataType": "LineString"

 },

 {

 "kind": "Spatial",

 "dataType": "Polygon"

 }

]

 }

],

 "excludedPaths": []

}

The principal heads here are indexingMode, automatic,

includedPaths, and excludedPaths. Each is considered in detail in the

following section.

 Indexing Modes
Let us start with indexingMode. This feature has several modes available

for indexing.

• Consistent: This is the default indexing mode. It causes

data to be indexed as soon as it is written, and write

acknowledgment is provided after the document is

indexed. In this case, the selected consistency will be

followed (whether selected as the default consistency

or specified in the connection).

Chapter 4 IndexIng

100

Following is the index configuration as JSON, wherein indexingMode =

consistent (Listing 4-21):

Listing 4-21. Configuration with indexingMode As consistent

{

 "indexingMode": "consistent",

 "automatic": true,

 "includedPaths": [

 {

 "path": "/*",

 "indexes": [

 {

 "kind": "Range",

 "dataType": "Number",

 "precision": -1

 },

 {

 "kind": "Range",

 "dataType": "String",

 "precision": -1

 },

 {

 "kind": "Spatial",

 "dataType": "Point"

 },

 {

 "kind": "Spatial",

 "dataType": "LineString"

 },

 {

 "kind": "Spatial",

Chapter 4 IndexIng

101

 "dataType": "Polygon"

 }

]

 }

],

 "excludedPaths": []

}

• Lazy: This mode of indexing will delay the indexing,

and Azure Cosmos DB will acknowledge the writes as

soon as they are written on disk. Indexing will occur

once the RUs become underutilized. In this case, a

predefined consistency mode will not work, and the

consistency will always be eventual. It will provide the

least cost during write but may introduce inconsistency

while read, as the data written on disk will take

some time to be indexed completely. So, in this case,

queries including aggregation, e.g., COUNT, can yield

inconsistent results during peak load.

• Following is the index configuration as JSON, wherein

indexingMode = lazy (Listing 4-22):

Listing 4-22. Configuration with indexingMode As lazy

{

 "indexingMode": "lazy",

 "automatic": true,

 "includedPaths": [

 {

 "path": "/*",

 "indexes": [

 {

Chapter 4 IndexIng

102

 "kind": "Range",

 "dataType": "Number",

 "precision": -1

 },

 {

 "kind": "Range",

 "dataType": "String",

 "precision": -1

 },

 {

 "kind": "Spatial",

 "dataType": "Point"

 },

 {

 "kind": "Spatial",

 "dataType": "LineString"

 },

 {

 "kind": "Spatial",

 "dataType": "Polygon"

 }

]

 }

],

 "excludedPaths": []

}

Chapter 4 IndexIng

103

• None: This mode of indexing has no index associated

with the data at all, which means there is no index

overhead, offering you maximum outcome during

writes. This is generally used if you are using Azure

Cosmos DB as a key-value pair database, with access

only through an ID field or self-link. In this case, you

must specify the EnableScanInQuery option (x-ms-

documentdb-enable-scan for REST API). It will

adhere to the consistency specified, either through

the portal or code. Please note that at the time of

writing, this mode was only available through the Azure

Cosmos DB–SQL API.

• Following is the index configuration as JSON, wherein

indexingMode = none (Listing 4-23):

Listing 4-23. Configuration with indexingMode as none

{

 "indexingMode": "none",

 "automatic": false,

 "includedPaths": [],

 "excludedPaths": []

}

By default, indexingMode is set to consistent, but if you have a very

heavy write requirement use case in which it is fine to have delay in

record retrieval, you can use lazy. If you don’t have to fetch the data using

queries, use none. As Azure Cosmos DB is highly performant, I suggest

that you perform a load test before changing indexingMode. If necessary,

change and validate the same. Now, let’s look at indexing paths.

Chapter 4 IndexIng

104

 Indexing Paths
An indexing path dictates the path you would like to index, which I

recommend be used mostly for queries. There are two configuration

options: the first is includedPaths, and the second is excludedPaths. As

the names imply, “included” means it falls in line with data indexing, and

“excluded” means it falls outside of the indexing purview. Following are a

few examples that will help defining this.

First is the default path that applies to the document tree (recursively).

{ "path" : "/" }

Next is the index path/subpaths required to serve queries with Hash or

Range types.

{"path" : "/field/?" }

Some examples of these queries include the following:

{"field" : "value"}

{"field" : {$lt : 100}}

db.book.find()._addSpecial("$orderby", { "field" : -1 })

db.book.find({$query:{}, $orderby : { "field" : -1}})

db.book.find().sort({"field" : -1})

Finally, here’s the index path for all paths under the specified label:

/field/*

This works with the following queries:

{"field" : "value"}

{"field.subfield" : "value"}

{"field.subfield.subsubfield" : {$lt : 30 }}

Chapter 4 IndexIng

105

 Index Kinds
As with MongoDB, Azure Cosmos DB includes the following indexes:

 Hash Indexes

Azure Cosmos DB performs hash-based indexing, which supports equality

queries and join queries efficiently. A built-in Hash function performs

mapping of hash values with the index key. By default, for all the string

data types, hash indexes are used.

Following is an example (Listing 4-24):

Listing 4-24. Sample Query That Uses a Hash Index

globaldb:PRIMARY> db.book.find({TestStatus : "Pass"});

 Range Indexes

For range queries having operations (e.g., $lt, $gt,$ lte, $gte, $ne) or sort

order or equality, a range index will be used. It is a default index type for all

non-string and spatial data types.

Following are sample queries using a range key index (Listing 4-25):

Listing 4-25. Sample Queries Using a Range Index

globaldb:PRIMARY> db.book.find({DeviceId : {"$gt":1}});

globaldb:PRIMARY> db.book.find({DeviceId : {"$gt":1}},{},

{_SiteId:-1});

 Geospatial Indexes

These types of indexes help to optimize queries related to location within

a two-dimensional space, such as projection systems for the earth.

Example of such queries would be those that contain a polygon or points

that are closest to a given point or line; those within a circle, rectangle,

Chapter 4 IndexIng

106

or polygon; or those that intersect a circle, rectangle, or polygon. Azure

Cosmos DB supports GeoJSON and uses the Coordinate Reference System

(CRS) World Geodetic System (WGS-84), which is the most widely used

coordinate. Following is the index specification:

{
 "automatic":true,
 "indexingMode":"Consistent",
 "includedPaths":[
 {
 "path":"/*",
 "indexes":[
 {
 "kind":"Range",
 "dataType":"String",
 "precision":-1
 },
 {
 "kind":"Range",
 "dataType":"Number",
 "precision":-1
 },
 {
 "kind":"Spatial",
 "dataType":"Point"
 },
 {
 "kind": "Spatial",
 "dataType": "LineString"
 },
 {
 "kind":"Spatial",
 "dataType":"Polygon"
 }

Chapter 4 IndexIng

107

]
 }
],
 "excludedPaths":[
]

}

Currently, the data type support available for spatial indexes includes

Point, Polygon, or LineString. Following are some examples you can use

(Listing 4-26):

Listing 4-26. Inserting Some Coordinates

> db.geo2dcoll.insertOne({location: {type: "Point",

coordinates: [28.354153, 77.373746]}});

> db.geo2dcoll.insertOne({location: {type: "Point",

coordinates: [28.370091, 77.315462]}});

Now, find the nearest point within 6.5 kilometers, using the code in

Listing 4-27.

Listing 4-27. Searching for the Nearest Point

>db.geo2dcoll.

find({ location: { $near: { $geometry:

{ type: "Point" , coordinates: [28.354153,

 77.373746] }, $maxDistance:

6500, $minDistance: 300 } } });

Output:

{ "_id" : ObjectId("5afdc37f83ae6a55a8f185ba"), "location" : {

"type" : "Point", "coordinates" : [28.370091, 77.315462] } }

Chapter 4 IndexIng

108

 Index Precision
This is important for balancing index storage vs. query performance. Better

precision means higher storage. However, this is practical only for string

data types. As for numbers, JSON consists of a minimum of 8 bytes, and

using 1–7 will reduce the precision and inhibit the reduction of storage

overhead. Spatial changing precision is not allowed. In string, this is useful,

because the length of a string can be arbitrary, and, by default, the scope

is full. However, if there is any use case that doesn’t require the entire

text to be indexed, you can configure it as 1–100 and -1 (maximum). No

equivalent exists in MongoDB.

 Data Types
Data types in index paths support String, Number, Point, Polygon, or

LineString. (One of these can be specified in one path.)

 Conclusion
By default in Azure Cosmos DB, all data will be indexed automatically with

the optimal configuration, which provides flexibility in making schematic

changes and helps to achieve maximum performance. Also, it doesn’t limit

users only to automatic indexing. Instead, it provides greater flexibility of

customization.

Chapter 4 IndexIng

109© Manish Sharma 2018
M. Sharma, Cosmos DB for MongoDB Developers,
https://doi.org/10.1007/978-1-4842-3682-6_5

CHAPTER 5

Partitioning
Scale, scale, scale…For most of the professional life span of a database

architect, these words reverberate whenever a new application is being

developed. The most difficult challenge is to design a database in

elastic mode. In the world of relational database management systems

(RDBMSs), this can occasionally be a nightmare, and it is a difficult task

in realm of NoSQL too. In this chapter, you are going to learn how, using

partitioning, Azure Cosmos DB scales databases.

 Sharding
In MongoDB, scaling is handled through a process called sharding. This is

a manual configuration process that helps in scaling a MongoDB instance,

by adding more compute and storage. MongoDB executes the sharding of

data at a collection level; therefore, each collection is spread to multiple

shards, refer Figure 5-1.

110

Three categories of components exist to make sharded clusters.

• Mongos: These behave like query routers (for reads as

well as writes) and help route the queries to MongoDB

Shard instances. Mongos will try to abstract the

sharding, by holding metadata for shards, owing to

which they know where the required data is located.

• Config Servers: These store configuration settings and

metadata for each of the shards. They must be deployed

as ReplicaSet.

• Shards: These are actual data nodes that hold a subset

of the data.

MongoDB shards data in chunks, which are then load-balanced in

physical shards, using a sharded cluster load-balancer.

Figure 5-1. Sharding in MongoDB

Chapter 5 partitioning

111

The split of data occurs using the shardKey option, and the selection of

shardKey is very important to provide optimal query performance during

runtime. There are three types of shardKey:

• Range key: A range-based shard key is the default

sharding methodology if neither zones nor hashing

is specified. In such a case, data will be divided into

sets of key ranges. This works best when there is large

cardinality, low frequency, and changes occur non-

monotonically. Let us consider an example in which we

have a field named age, have 10, 35, and 60 as values,

and are using a range key methodology. A value will be

stored in the shard having that range (see Figure 5-2).

• Hashed key: According to this method, the shard key is

hashed using a hash function and distributed to a data

node in the form of ranges. This type of distribution is

even and best suited for changing keys monotonically.

Make sure to use a field that has a maximum number

of unique values. This will result in better distribution.

Also, do not use a floating-point data type for hashing.

Figure 5-2. Sharding based on a range key methodology

Chapter 5 partitioning

112

This will create issues with decimal points. E.g., in

terms of the hashing function, 5.1 and 5.6 are the same;

therefore, it won’t be possible to distinguish them

uniquely. Let’s consider an example in which age is the

key field, with the values 32, 35, and 34. These values

will be hashed and stored in the chunk according to the

hashed value (see Figure 5-3).

• Zones: This is a subgrouping of shards that can be

based on geography, specific hardware cluster, or

data isolation, owing to data residency issues. Let’s

say we have Shard-1, Shard-2, and Shard-3. We can

store Shard-1 and Shard-2 in Zone-A, whose physical

location is in Germany, whereas Shard-3 can be stored

in France, for issues related to data residency. This

could be due to variations in the hardware cluster, for

which you would like better hardware for premium

customers, etc. Please note that the chunks will be

load-balanced within their zone, and shards can be

overlapped in multiple zones.

Figure 5-3. Sharding based on hashed key methodology

Chapter 5 partitioning

113

It is very important to select an optimal shard key, which will be the

basis of read and write performance for overall cluster implementation.

Once a key is selected, it is not possible to modify it, unless the collection is

re-created. Please note: To get the optimal performance from the sharded

environment, use the shard key in your query’s filter criteria, which will

help in reaching the specific partition. Otherwise, it will be forced to

perform broadcast operations that are costly and incur a lot of latencies.

The advantages of sharding include scaling on storage and the possibility

of adding compute to get more throughput. To achieve high availability (HA),

you must create a ReplicaSet for the entire sharded cluster.

 Partitioning in Azure Cosmos DB
First, note the change in nomenclature. Sharding is referred to as

partitioning here. (In user interfaces [UI], the nomenclature is being

changed to shard, specifically for Mongo API). Partitioning is far simpler

in Azure Cosmos DB. All partition management is handled by the Azure

Cosmos DB engine, and like MongoDB, one need only take care of

the partition key. A wrong partition key can increase costs and reduce

performance, which might lead to a poor overall user experience.

Figure 5-4. Sharding based on zone

Chapter 5 partitioning

114

Figure 5-5. Provisioning of a fixed collection

Like MongoDB, partitioning is optional, and it doesn’t demand a

partition key if a fixed collection is created, refer Figure 5-5. It will not

cross one physical partition, because it doesn’t propose to spread the data

into multiple units. It provides limited throughput (10k RU) and storage

(10GB), which will not exceed the specified limits. You might be wondering

what RU is? It is the combination of compute, memory, and input/output

operations per second (IOPS) that helps to create a predictive performance

experience for the end user. More details related to this are provided in

Chapter 7.

Chapter 5 partitioning

115

For an unlimited collection, there is no hard limit on the number of

partition instances. However, the limit of one partition, which is 10k RUs

(request units) and 10GB storage, is applicable here as well, refer Figure 5-6.

So, make sure you try to distribute the load across partition key ranges and

avoid hot paths. Once you create an unlimited collection, Azure Cosmos DB

will, by default, create physical partitions and distribute the RUs equally to

each partition, according to the RUs specified. E.g., if 50k RUs are specified

for an unlimited collection, five partitions will be created, and every

partition will have 10k RUs. Azure Cosmos DB will keep balancing the logical

partitions to physical partitions and the distribution of RUs, if the physical

partitions are changed.

Note in azure, spending is protected by default, via soft limits
(quotas), which can be revoked by raising an azure support ticket.

Chapter 5 partitioning

116

Figure 5-6. Screenshot of the provisioning of an unlimited collection

Once you’ve selected the unlimited storage capacity option, the

form will automatically ask you for a shard key, which can be any key in

the main document’s field or subdocuments field, refer Figure 5-7. It is

mandatory to have the specified key in every document, apart from the _id

field. Like chunks, Azure Cosmos DB will also have logical partitions based

on the partition key specified, and it will balance these on the basis of

their suitability to the physical partition. The physical partition does have

a storage size limit of 10GB and compute capacity of 10k RUs, so make

sure any of your partition keys don’t anticipate data of more than 10GB or

Chapter 5 partitioning

117

a processing requirement of more than 10k RUs. If they do, your request

will be throttled accordingly. To understand this in detail, let’s take as an

example the following data in Listing 5-1:

Listing 5-1. JSON Structure of Sensor Data

{

 "_id" : ObjectId("5aae21802a90b85160a6c1f1"),

 "SiteId" : 0,

 "DeviceId" : 0,

 "SensorId" : 0,

 "Temperature" : "20.9",

 "TestStatus" : "Pass",

 "TimeStamp" : {

 "$date" : 1520929246056

 }

}

Suppose every device has sensors, and sensors can emit the message

defined in the preceding structure at a frequency of one message per

second, which means 60 secs × 60 mins × 24 hours = 86,400 messages

per day. If we have the message size as 300B per message, we will end up

having a data size equal to 24.72MB per sensor/day. One device holding

10 sensors will hold up to 247MB/day. So, one physical partition can store

the messages generated by 41 devices (<10GB), and once the 42nd device

starts generating messages, and tries to acquire additional space greater

than 10GB, the Azure Cosmos DB partitioning engine will be triggered

to move this logical partition to another physical partition. Now, adding

another partition will trigger an attempt to rebalance the RUs.

Chapter 5 partitioning

118

Do you think this is a correct strategy? If the answer is no, we are in

agreement, and feel free to skip the next few lines. If you are still wondering

why the answer isn’t yes, let’s take a closer look. We are talking about

sensors generating data that is being distributed using devices, which

means that if we have to store each device’s data (given the preceding

scenario) for more than 42 days (which is accumulating >10GB), then we

hit a wall, as one device’s data for 42 days will accumulate to 10GB, which

is the physical partition limit, and the database engine can’t split the data

further, refer Figure 5-8.

Figure 5-7. DeviceID is defined as a partition key

Chapter 5 partitioning

119

Figure 5-9. DeviceID and Day as partition key

So, which is the right partition key? Let’s take another shot. How about

DeviceID and Day as the partition key (see Figure 5-9). In this case, the

data will have more logical variations, and Azure Cosmos DB will be able

to spread them to multiple physical partitions.

Figure 5-8. DeviceID is a bad partition key choice

In this case, if you perform a query by applying DeviceID and Day

together as criteria, the performance will be optimal; otherwise, it will fan

out to all the partitions (Broadcast in MongoDB). However, at the time

this book was being written, Azure Cosmos DB didn’t support composite

Chapter 5 partitioning

120

partition key. Therefore, one must create a new field and merge data of

both required fields, in order to use a couple of fields as one partition key.

The relevant code is included in Listing 5-2.

Listing 5-2. Document with New Field DeviceID and Day

{

 "_id" : ObjectId("5ab14e342a90b844e07fc060"),

 "SiteId" : 0,

 "DeviceId" : 998,

 "SensorId" : 0,

 "Temperature" : "20.9",

 "TestStatus" : "Pass",

 "TimeStamp" : 1518977329628

}

Let us execute a simple find statement in the MongoDB shell

(see Figure 5-10).

Figure 5-10. Query using clubbed field as a partition key

Chapter 5 partitioning

121

If the data does not have to be stored for more than 30 days, after which

it can expire, using the TTL (Time-to-live) limit, DeviceID works best as the

partition, and those readers who answered yes to the previous query have

the correct answer now refer Figure 5-11.

Figure 5-11. Setting up TTL

The physical partitions will be replicated in-parallel if geo-replication

of partitions (see Figure 5-12) is specified and will be independent across

partitions.

Chapter 5 partitioning

122

Most of the restrictions that are applicable to MongoDB sharding are

also applicable to Azure Cosmos DB. For example, once a partition key is

specified, it is not possible to change it. To do so, you must re-create the

collection. Partitioning occurs at the collection level, and it is required that

a document have a partition key.

 Optimizations
Following are some optimization tips that are straightforward and easily

adoptable.

• Strictly use partition keys in query criteria: The compute

cost is also a major factor in selecting a partition key. If

you specify a partition key that is rarely used in query

criteria, the query will fan out across partitions to

serve the result. Therefore, the cost of the query will

become higher and cause a great amount of latency as

well. Assuming deviceidday as the partition key, refer

to Figure 5-13 to compare the costs associated with a

query, with and without the use of a partition key.

Figure 5-12. Geo-replication of partitions

Chapter 5 partitioning

123

• Variable number of documents across partition key:

Spread of a partition key should not be variable to the

extent that the metrics of a partition graph indicate

storage of logical partition with too much zigzag (see

Figure 5-14). The line-of-distribution graph should

be as close to straight as possible. Eventually, storage

will be load-balanced upon physical partition, which

achieves the ripple effect of un-optimized consumption

of RUs. In such cases, RUs allocated to other partitions

will be wasted.

Figure 5-13. Query cost: on the left is the query without a partition
key (RU consumed = 18.43), and on the right is the query with
a partition key (RU consumed = 7.66). The partition key used is
deviceidday.

Chapter 5 partitioning

124

Figure 5-14. Zigzag pattern in storage of logical partition
(un- optimized)

• Avoid unique values in partition keys: For example, if

we assume a unique partition key value equals U, and

the number of records is N, we shouldn’t have U = N, in

case of a non-key-value pair-based structure. In a key-

value pair-based data structure, this is the most optimal

way to store data.

• Keep tabs on storage per partition: Under its Metrics

blade (see Figure 5-15), Azure Cosmos DB has an

option to monitor storage as a separate tab, and alerts

can be set up at the highest possible threshold so that

preventive action can be taken before insufficient

storage is generated.

Chapter 5 partitioning

125

• Store documents for relevant time-period: If a document

doesn’t have to be queried after a certain interval, it is

best to expire it by specifying a TTL limit. This can be

specified at the collection level, and it doesn’t consume

RUs while expiring the document. The document’s

met expiration timestamp will be hard-deleted and

cannot be rolled back. Therefore, if a timestamp is

required to archive data, store it in cheaper persistent

storage, such as Azure Blob Storage. The following code

specifies TTL at the collection level for a document,

refer Listings 5-3a and 5-3b.

Listing 5-3a. Specifying TTL at collection level

globaldb:PRIMARY> db.sensor.createIndex({ "_ts": 1 }, {

expireAfterSeconds: 3600 })

Figure 5-15. Storage metric

Chapter 5 partitioning

126

Here is the output of the preceding code (Listing 5-3):

Listing 5-3b. Specifying TTL at the Collection Level via Code

{

 "_t" : "CreateIndexesResponse",

 "ok" : 1,

 "createdCollectionAutomatically" : false,

 "numIndexesBefore" : 3,

 "numIndexesAfter" : 4

}

 Selecting a Partition Key
So far, we have discussed the fundamentals and handling of partition keys

by Azure Cosmos DB. Now, let’s look at an example.

 Use Case
A fire-safety company would like to analyze real-time data from its cutting-

edge devices. Every device will behave like a hub and receive messages

from multiple sensors, which will send information about the sensor’s

status, temperature, etc. This solution is primarily for high-rise apartment

buildings, for which fire-safety equipment is critical. There will be a field

called Site that will denote the tower number. Each site will have devices

installed onto apartments within the tower, and each device will have

sensors that will be installed in each of the apartment’s rooms.

Now, a customer’s requirement is to push the messages to cloud,

for analytics and real-time processing. Most of the time, the customer is

interested in performing analytics at the device level. See Listing 5-4 for the

sample structure of the message.

Chapter 5 partitioning

127

Listing 5-4. Sample Message Structure

{

 "_id" : ObjectId("5ab14e342a90b844e07fc060"),

 "SiteId" : 0,

 "DeviceId" : 0,

 "SensorId" : 0,

 "Temperature" : "20.9",

 "TestStatus" : "Pass",

 "TimeStamp" : 1518977329628

}

 Evaluate Every Field to Be a Potential
Partition Key
Assuming that the message size is 1KB, every sensor is generating data

on a per-second basis, and there will be 10 sites, with 15 apartments in

each sites and 4 rooms in each apartment. Therefore, the total hardware

requirement will be as follows: Site = 10 (unique keys = 10), Devices

required = 15 per site (unique keys = 15 × 10 = 150), and sensors required = 4

per device (unique keys = 150 × 4 = 600). This means a total of 600

messages (msgs) will be generated each second, which amounts to 600

msgs × 60 secs × 60 mins × 24 hrs × 30 days = 1.5552 billion messages per

day. The storage size at sensor level would be 1483/GB/MO (approx.). As

mentioned previously, the physical partition size will have a limit of 10GB;

therefore, at least 149 physical partitions are needed, which require at least

149 physical partition keys. So, only device and sensor fields are candidates

to become partition keys.

Chapter 5 partitioning

128

 Selection of the Partition Key
There are two important considerations to bear in mind. One is the

query pattern. If you don’t specify a partition key as one of the criteria,

the database engine will end up performing scans, which will increase

consumption of RUs phenomenally. You may also be throttled by a

number of RUs that you have allocated to an Azure Cosmos DB instance.

In our example, the analytics are performed at the device level, so

considering it as a partition key will help.

A second consideration is the scaling possibilities. As you can see,

the sensor has a possible 600 keys, which means we can scale to 600

partitions (at max), whereas the device also has 150 keys, which also meets

our requirement. Just as with the preceding one, if we are sure about

our requirement, and we are not expecting variability in our use case,

the device field will be suitable for becoming a partition key, which will

efficiently consume RUs while querying the data and provide enough keys

for the number of partitions.

Let’s get our hands dirty. Refer to the sample introduced in Chapter 3

and create a new collection with the partition key as DeviceId (see

Figure 5-16). Open the program.cs file from the sample code referenced in

Chapter 3 and change the main method, to add more sophistication and

adhere to the use case mentioned (see Listing 5-5).

Listing 5-5. Replacing This Code with the program.cs Code

Mentioned in the Sample in Chapter 3

static void Main(string[] args)

 {

 ///Get the connectionstring, name of database &

collection name from App.config

 string connectionString = ConfigurationManager.

AppSettings["ConnectionString"];

Chapter 5 partitioning

129

 string databaseName = ConfigurationManager.

AppSettings["DatabaseName"];

 string collectionName = ConfigurationManager.

AppSettings["CollectionName"];

 //Connect to the Azure Cosmos DB using MongoClient

 MongoClient client = new MongoClient

(connectionString);

 IMongoDatabase database = client.GetDatabase

(databaseName);

 IMongoCollection<EventModel> sampleCollection

 = database.GetCollection<EventModel>

(collectionName);

 //This will hold list of object needs to insert

together

 List<EventModel> objList = new List<EventModel>();

 //Loop through Days, right now I am considering only 1

day but feel free to change

 for (int day = 1; day >= 1; day--)

 {

 //loop through the hour

 for (int hour = 1; hour <= 24; hour++)

 {

 //loop through the minute

 for (int minute = 1; minute <= 60; minute++)

 {

 //loop through the seconds

 for (int second = 1; second <= 60;

second++)

 {

Chapter 5 partitioning

130

 //Loop through the sites

 for (int site = 1; site <= 10; site++)

 {

 //Loop through the Devices

 for (int device = 1; device <= 15;

device++)

 {

 //Loop through the sensors

 for (int sensor = 1; sensor <= 4;

sensor++)

 {

 //initialize the message

object

 var obj = new EventModel()

 {

 _id = new

BsonObjectId(new

ObjectId()),

 SiteId = site,

 //It will help uniquely

generating DeviceId

basis the site

 DeviceId = device +

site * 1000,

 //This will help

uniquely generating

SensorId basis the

Device

 SensorId = sensor +

((device + site * 1000)

* 1000),

Chapter 5 partitioning

131

 TimeStamp = DateTime.

Now,

 Temperature = 20.9M,

 TestStatus = "Pass",

 deviceidday = device.

ToString() + DateTime.

Now.ToShortDateString()

 };

 //add into the list

 objList.Add(obj);

 }

 }

 //indicate Site's messages are

added

 Console.WriteLine("site:" + site);

 }

 //indicate the second roll over

completed

 Console.WriteLine("second" + second);

 //inserting the messages collected in

one minute interval

 sampleCollection.InsertMany

(objList);

 //clear the list to get ready for next

minute sequence

 objList.Clear();

 }

 //indicate the minute roll over completed

 Console.WriteLine("minute" + minute);

 }

 //indicate the hour roll over completed

 Console.WriteLine("hour" + hour);

Chapter 5 partitioning

132

 }

 //indicate the Day roll over completed

 Console.WriteLine("day" + day);

 }

 }

Figure 5-16. Creating a collection with DeviceId as partition key

Chapter 5 partitioning

133

Figure 5-17 shows that each partition key can handle large amounts

of data and give Azure Cosmos DB’s engine the chance to load-balance it

whenever required.

Figure 5-17. Storage metric depicting partition keys for the DeviceId field

Now, let us consider SensorId field as partition key and let us evaluate,

refer Figures 5-18 and 5-19.

Chapter 5 partitioning

134

Figure 5-18. Creating a collection with the SensorId field as
partition key

Chapter 5 partitioning

135

Figure 5-19. Storage metric depicting a greater number of keys when
the SensorId field is selected as the partition key

You can see that SensorId provides more keys, but the data size against

each key is less. In addition, in our purposes, we must use DeviceId, not

SensorId, as a criterion for most of the queries. Therefore, our selection of

DeviceId is optimal for our use case.

Conclusion
In this chapter we have discussed, how Azure Cosmos DB’s storage scales

out and how to get optimal partitions by candidate fields in the document.

Through partitions from day one, it is far easier as compared to MongoDB

to achieve scale and manage it in Azure Cosmos DB. In Chapter 7, we will

discuss the Sizing and impact of partitioning on the sizing calculations.

Chapter 5 partitioning

137© Manish Sharma 2018
M. Sharma, Cosmos DB for MongoDB Developers,
https://doi.org/10.1007/978-1-4842-3682-6_6

CHAPTER 6

Consistency
Consistency is a very important factor in database transactions. It dictates

the behavior of the database during reads and writes. It is a more complex

and critical factor in databases that are distributed. In this chapter, you will

learn the consistency levels available in Azure Cosmos DB.

 Consistency in Distributed Databases
As database systems are critical to data-driven applications, ensuring

availability is important. So, to ensure high availability (HA), you will end

up having multiple copies of databases (see Figure 6-1).

Figure 6-1. ReplicaSet consists of a leader (primary) and followers
(secondaries)

138

Cross-region copies will ensure business continuity in case something

goes wrong in the primary region. This is known as disaster recovery (DR).

There can be more cross-region use cases as well. One of the most prevalent

is having a user base across the globe and wanting to deploy an application

closer to users, to avoid network latency (see Figure 6-2).

In such scenarios, ensuring consistency can be quite cumbersome.

Let’s look at an example.

If you execute a write request to insert Item-A and immediately read

Item-A from primary as well as secondaries, the response will depend on

the consistency level. In cross-geo, there can be many more variables, e.g.,

Figure 6-2. Database with ReplicaSet within geographical as well
as cross-geographical regions

Chapter 6 ConsistenCy

139

network latency, connectivity failure, etc., which cause further issues (see

Figure 6-3). So, the CAP theorem states that one must select any of two

aspects among consistency, availability, and partition tolerance.

The preceding was a case of failure. How about a successful use case

involving network latency across geographical regions? The procedure

will be the same. You must insert the data and then try to execute the read

command across geographic regions (let’s say within a gap of 80ms). Will

that return the correct result or not? Another theorem, called PACELC,

pitches in here. It states that, in addition to CAP, one must consider latency

vs. consistency, in case a system is working under normal conditions (see

Figure 6-4).

Figure 6-3. Database with ReplicaSet indicating a network failure

Chapter 6 ConsistenCy

140

Now, let’s look at different consistency levels.

 Consistency in MongoDB
In MongoDB, strong consistency will be applicable by default for local

instances and, eventually, for read replicas. This behavior can be influenced

by the read and write concerns that will define the behavior of a transaction.

In MongoDB, the write request can specify the write concern, which

dictates the acknowledgment of write from the number of replicated

instances. It will ensure the durability of the write transactions. For

read requests, you can define four types of read concerns: local,

Figure 6-4. Database with ReplicaSet having network latency
across geographic locations

Chapter 6 ConsistenCy

141

available, majority, and linearizable. In the case of “local,” irrespective

of the write concern, data will be available from the primary instance,

without ensuring a durable commitment to other replicas. It defaults to

read concern against primary, and it defaults to secondary, if the reads

are associated with causally consistent sessions. For “available,” the

behavior remains the same as for “local,” except that it defaults to read

concern for secondaries when a causal consistent session is not there

and is not available when causal consistency is set. The “majority”

read concern will revert to more consistent data, after a majority of

nodes acknowledge the writes. The “linearizable” read will wait until

a majority of replicas acknowledge the writes, which ensures the most

consistent read of all the read concerns. This can be defined only for

primary instance/master node.

You can execute the command by explicitly specifying the read

concern in MongoDB (see Listing 6-1).

Listing 6-1. MongoDB’s Shell Command for Specifying Read Concern

db.collection.find().readConcern(<"majority"|"local"|"linearizable"|

"available">)

If you are working in a distributed database environment, ensuring

that you can read your writes is a challenge, as it will take some time to

replicate your writes. In practice, setting up a linearizable read concern is

often not possible, as it will increase latency. Recently, in MongoDB 3.6,

a client session was introduced in which the reads/writes are consistent

within the scope of the user session, which is called causal consistency. It

will ensure that you will not have performance glitches and still allow you

to be able to read your writes.

Chapter 6 ConsistenCy

142

 Consistency in Azure Cosmos DB
Azure Cosmos DB has five types of consistency: strong, bounded staleness,

session, consistent prefix, and eventual. To understand this completely, let

us define two groups of consistency behavior: consistent reads/writes and

high throughput.

 Consistent Reads/Writes
Azure Cosmos DB offers the possibility of consistent reads/writes with

three characteristics: strong consistency, bounded staleness, and session

staleness. To understand their behavior, let’s consider a few examples of

each.

Listing 6-2 gives the code for a sample document that we will be using

to explore various consistency levels.

Listing 6-2. Code for Sample Document

{ "_id" : "469", "SiteId" : 0, "DeviceId" : 0, "SensorId" : 0,

"Temperature" : "20.9", "TestStatus" : "Pass", "deviceidday" :

"03/10/2018" }

 Strong Consistency

For strong consistency, Azure Cosmos DB ensures that writes are visible

only after they are committed as durable by both the primary and a

majority of replicas, or are aborted. A client can never see uncommitted

or partially committed writes and is guaranteed to read the latest

acknowledged write (see Figure 6-5).

Chapter 6 ConsistenCy

143

This is the costliest latency level, in terms of latency and RUs

consumed for read operations (see the sample code following in this

section). To set up strong consistency in the Azure portal, see Figure 6-6.

Figure 6-5. Write acknowledgment (checkmarks indicate committed
writes)

Figure 6-6. Configuration for a strong level of consistency

Chapter 6 ConsistenCy

144

Azure Cosmos DB employs a “linearizability checker,” which

continuously monitors operations and reports any consistency violations

directly in Metrics. Let’s delve into the specifics with an example.

First, let’s push the data and attempt to fetch it.

db.coll.insert({ "_id" : "469", "SiteId" : 0, "DeviceId" : 0,

"SensorId" : 0, "Temperature" : "20.9", "TestStatus" : "Pass",

"deviceidday" : "03/10/2018" });

To better understand the performance, run the following command

(Listing 6-3). Insertion took 13.9 RUs, with a latency equivalent to 55ms.

Listing 6-3. Checking Performance of Linearizability

db.runCommand({getLastRequestStatistics: 1});

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

 "CommandName" : "insert",

 "RequestCharge" : 13.9,

 "RequestDurationInMilliSeconds" : NumberLong(55)

}

The request charge is the cost in terms of RUs. Now, let’s read it

(Listing 6-4). The request charge for read request will be 6.98 RUs with

the latency as 4ms.

Listing 6-4. Calculating the Request Charge (in RUs)

db.coll.find({"_id" : "469"})

db.runCommand({getLastRequestStatistics: 1});

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

Chapter 6 ConsistenCy

../../../../../dl.acm.org/citation.cfm@id=1806634

145

 "CommandName" : "OP_QUERY",

 "RequestCharge" : 6.98,

 "RequestDurationInMilliSeconds" : NumberLong(4)

}

If you have noticed, the cost of read for one document <1KB in size

is 6.98 RUs, which is quite high. For more details about RUs, please see

Chapter 7.

 Bounded Staleness

This is a unique concept, incepted for very high throughput. In this

case, read may lag the writes by a configured time interval or number of

operations (see Figure 6-7).

Figure 6-7. Write acknowledgment (checkmarks depict committed
writes)

Chapter 6 ConsistenCy

146

You can create as many as geo-replicated instances as you require,

which is not available with strong consistency. This is also a default level

for data loss guarantee, in case something goes wrong in the Azure region

in which your primary region is hosted. The cost in terms of latency and

the number of RUs consumed for read operations remains the same as

that for strong consistency. To configure this consistency level in the Azure

portal, refer to Figure 6-8.

There are two constraints to configuring values for bounded staleness:

 1. Maximum lag (number of operations): 10 to

1,000,000 is applicable for a single region, and

100,000 to 1,000,000 for multiple regions.

 2. Maximum lag time: 5 seconds to 1 day for a single

region, and 5 minutes to 1 day for multiple regions

Figure 6-8. Configuration for a bounded staleness consistency level

Chapter 6 ConsistenCy

147

Note at the time of writing this book, the azure Cosmos DB–MongoDB
api did not support this consistency level. i have included it here for
your information, as it is an important functionality and might be
included as part of the api in the near future.

 Session

The scope of this consistency is local and will be useful in case you must

read your writes. It is also important if you have to perform immediate read

operations within a session, e.g., writing information for a user session

that requires immediate retrieval of the value, or any device writing the

data that requires immediate aggregation with the latest value, etc. Refer to

Figure 6-9 for details.

Figure 6-9. Write acknowledgment (checkmarks depict committed
writes)

Chapter 6 ConsistenCy

148

With this consistency level, any number of geo-distributions is

allowed. It will provide maximum throughput with lower costs, compared

to the other strong consistencies. To set up this consistency level in the

Azure portal, refer to Figure 6-10.

Note at the time of writing this book, the azure Cosmos DB–
MongoDB api does not support this consistency level. i have included
it here for your information, as it is an important functionality and
might get included as part of the api in the near future.

 High Throughput
There are some consistencies which are designed to provide best

throughput with minimum cost. These are consistent prefix and eventual.

Figure 6-10. Configuration of the session consistency level

Chapter 6 ConsistenCy

149

 Consistent Prefix

This consistency is based on eventual convergence of the replicas. It

ensures that the sequence of writes will remain intact. If ‘1’, ‘2’, ‘3’ is

written with the same sequence, then Azure Cosmos DB will ensure that

either ‘1’ or ‘1’, ‘2’ or ‘1’, '2’, ‘3’ will be retrieved, irrespective of the region

(multi/single). (See Figure 6-11.)

Figure 6-11. Configuration of the consistent prefix consistency level

Chapter 6 ConsistenCy

150

The performance of this type of consistency is also very close to being

optimal. To configure it in the Azure portal, see Figure 6-12.

Note at the time of writing this book, the azure Cosmos DB–MongoDB
api doesn’t support this consistency level. i have included it here for
your information, as it is an important functionality and might get
included in the api in the near future.

 Eventual

Eventual consistency is the weakest form of consistency, in which a client

may get stale values (values older then the write). It ensures that data will

be converged eventually, when there are no further writes. As it doesn’t

carry the overhead of ensuring a sequence of reads, committing to a

Figure 6-12. Configuration of the consistent prefix consistency level
in the Azure portal

Chapter 6 ConsistenCy

151

majority or quorum of them, etc., as do other consistency levels, eventual

consistency performs optimally for both reads and writes, with less cost

(see Figure 6-13).

Figure 6-13. Configuration of eventual consistency level

Chapter 6 ConsistenCy

152

To configure the eventual consistency level in the Azure portal, see

Figure 6-14.

Once the consistency level gets changed then push the document to

the collection and evaluate the outcome using db.runCommand(), refer

Listing 6-5.

Listing 6-5. Insertion Took 13.9 RUs with Latency Equivalent to 5ms

db.coll.insert({ "_id" : "469", "SiteId" : 0, "DeviceId" : 0,

"SensorId" : 0, "Temperature" : "20.9", "TestStatus" : "Pass",

"TimeStamp" : { "date" : 1520660314835 }, "deviceidday" :

"03/10/2018" });

db.runCommand({getLastRequestStatistics: 1});

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

Figure 6-14. Configuration of the eventual consistency level in the
Azure portal

Chapter 6 ConsistenCy

153

 "CommandName" : "insert",

 "RequestCharge" : 13.9,

 "RequestDurationInMilliSeconds" : NumberLong(5)

}

Let us try to read the document (see Listing 6-6).

Listing 6-6. Request Charge for Read Request

db.coll.find({"_id" : "469"})

db.runCommand({getLastRequestStatistics: 1});

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

 "CommandName" : "OP_QUERY",

 "RequestCharge" : 3.49,

 "RequestDurationInMilliSeconds" : NumberLong(4)

}

If you compare the request charge with that for strong consistency, it is

much less.

 Conclusion
I have discussed the various types of consistencies and explained that

some give comparable results, some are performant, and some assure

consistent reads. There is no rule of thumb governing the selection of one

over another, but it is suggested that you thoroughly analyze the use case

and select the appropriate consistency.

Chapter 6 ConsistenCy

154

To ensure that Azure Cosmos DB is meeting the consistency level you

have selected, Azure Cosmos DB includes it in the SLA guarantee. It also

has a linearizability checker that continuously monitors the operations

and reports any violations. For bounded staleness, it validates the

replication bounds occurring within the bounded staleness configuration

and reports the violation in the metrics, called probabilistically bounded

staleness metrics. Also, other consistency-level violations will be reported

at the consistency metrics available in the Azure portal ➤ Azure Cosmos

DB Account ➤ Metrics ➤ Consistency (see Figure 6-15).

Figure 6-15. Consistency metrics

Chapter 6 ConsistenCy

155© Manish Sharma 2018
M. Sharma, Cosmos DB for MongoDB Developers,
https://doi.org/10.1007/978-1-4842-3682-6_7

CHAPTER 7

Sizing
So far, I have covered various aspects of Azure Cosmos DB from the

usage perspective. In this chapter, I will explain the sizing aspect of Azure

Cosmos DB.

Unlike any traditional implementation, Azure Cosmos DB doesn’t

push developers to become hardware engineers or presume database

architects to be omniscient. Frankly, it is not possible to gain an accurate

appraisal based solely on the experience of developers/architects. Azure

Cosmos DB addresses this problem beautifully and provides a natural way

of configuring databases that is based on the following parameters:

• Size of the document

• Number of documents

• Number of CRUD (Create, Read, Update & Delete)

operations

 Request Units (RUs)
Azure Cosmos DB is designed for high throughput and predictive

performance, which means it must reserve resources. However, it provides

flexibility to increase and decrease the reserved resources on the fly.

Reserved resources are defined as request units per second. It is the

combination of resources, including CPU, memory, and IOPS (input/output

156

operations per second), required to process each CRUD operation. Azure

Cosmos DB distributes RUs to partitions equally. So, if you have 10k RUs at

container level, for five physical partitions, each partition will receive 2k RUs.

 Allocation of RUs
In the last line of the previous section, I used the term container, and

you might be wondering what this is. This is a term used to refer to a

database or collection—wherever you would like to allocate RUs. If you

have multiple collections, and you don’t want to allocate dedicated RUs

to each of them, then allocating RUs at collection will be the right option.

Otherwise, you can allocate the RUs on collection. You can also do both.

Once you allocate RUs at the database level, you have two choices while

provisioning a collection inside the given database. One is not to allocate

RUs to the collection being provisioned and take the RUs from the

database (up to the maximum of the database RU). Another is to allocate

RUs to a collection that will be dedicated to the collection, and no other

collection belonging to the same database can consume them. Please note

that the RUs allocated explicitly to a collection will be additional to the RUs

you have allocated to the database. For example, if we allocated 50k RUs

to a database and then added 5 collections to it, you would be charged for

50k RUs, irrespective of the number of collections you add, and any of the

collections could take 50k RUs. Note that they might have to contend for

RUs, owing to reaching the peak of their individual usage. If we add a 6th

collection and provide 10k RUs to this collection in the same database,

we would be charged 50k RUs + 10k RUs = 60k RUs overall, and our newly

added collection would enjoy the dedicated performance.

To add RUs at the database level, create a new database by navigating

to Azure Cosmos DB Account ➤ Data Explorer ➤ New Database, then tick

Provision Throughput and fill in the form, as shown in Figure 7-1.

Figures 7-2 to 7-5, illustrates the allocation of RUs at the database and

collection levels.

Chapter 7 Sizing

157

Figure 7-1. Allocating RUs at the database level

Figure 7-2. Option to scale will appear on the database
(continuation of Figure 7-1)

Chapter 7 Sizing

158

Figure 7-3. Allocating RUs at the collection level

Figure 7-4. Adding RUs to the database from the collection

Chapter 7 Sizing

159

Now, allocating RUs at the database level helps in cases in which you

have more than a few collections, by reducing costs and by making them

share the same number of RUs. Let’s say you have 80 collections, and all

must fall in unlimited storage. You will require at least 80k RUs to start with,

but allocating at the database level, you can add a database with 50k RUs,

and you are sorted. In this case, the maximum throttling limit would be 50k.

Please note that once you select RU allocation at the database level, you

must mandatorily select the partition key while provisioning the collection.

 Calculating RUs
To understand the calculation of RUs, let’s consider an example. The code

for the relevant JSON document is provided in Listing 7-1.

Figure 7-5. There are no scale options for collections using RUs from
a database

Chapter 7 Sizing

160

Listing 7-1. JSON Document

{ "_id" : "469", "SiteId" : 0, "DeviceId" : 0, "SensorId" : 0,

"Temperature" : "20.9", "TestStatus" : "Pass", "deviceidday" :

"03/10/2018" }

Following are additional stats:

Size of one document = 231 bytes

Number of documents = 300,000,000

Number of write operations = 200

Number of read operations = 400

Let’s execute some queries to determine how many RUs we require.

globaldb:PRIMARY> db.eventmsgss.find({SensorId: 1001001}).

limit(1);

globaldb:PRIMARY> db.runCommand({getLastRequestStatistics:1})

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

 "CommandName" : "OP_QUERY",

 "RequestCharge" : 3.49,

 "RequestDurationInMilliSeconds" : NumberLong(4)

}

The preceding read query uses SensorId as a criterion, wherein we are

considering it as a partition key and are fetching exactly 1 record, sized at

231 bytes.

globaldb:PRIMARY> db.eventmsgss.insertOne({ "_id" : ObjectId(),

"SiteId" : 1, "DeviceId" : 1001, "SensorId" : 1001999,

"Temperature" : "20.9", "TestStatus" : "Pass", "TimeStamp"

: ISODate("2018-05-21T16:23:32.256Z"), "deviceidday" :

"15/21/2018" })

Chapter 7 Sizing

161

globaldb:PRIMARY> db.runCommand({getLastRequestStatistics:1})

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

 "CommandName" : "insert",

 "RequestCharge" : 13.14,

 "RequestDurationInMilliSeconds" : NumberLong(33)

}

The preceding insert query takes 13.14 RUs for one write of 231 bytes.

With these results, the following will be the typical result:

Size of total documents = 65GB (approx.)

Number of partitions required to hold above size = 7

physical partitions (10GB/partition)

Number of RUs required for write operations = 5256 RUs

Number of RUs required for read operations = 1396 RUs

Total number of RUs required for operations = 6700 RUs

(nearest 100, exact is 6652 RUs)

The price of Azure Cosmos DB RU is per 100 RUs, which means the price

mentioned in the price list must be multiplied as (6700/100) × price per 100

RUs. For the preceding figures, I have considered this by assuming that the

load will be distributed on all the partitions. Therefore, in practice, with 6700

RUs per partition, we can expect 957 RUs (approx.). (See Figure 7-6.)

Chapter 7 Sizing

162

Each geo-replicated region will cost the independent instance the

exact equivalent of the instance that you have configured in Azure Cosmos

DB. That is, if you have configured an Azure Cosmos DB instance in West

US and created three copies, it will incur a charge of 3 + 1 = 4. In the case of

Azure Cosmos DB being geo-replicated, the calculation must consider the

number of regions, as follows:

Number of regions = 1 write region + 3 read regions,

which means 4 regions

Total number of RUs = 6700 × 4 = 26,800 RUs

For price calculation = (26,800/100) × price per 100 RU

Let us look at another example.

Size of one document = 4KB

Number of documents = 16,000,000

Number of write operations = 400

Number of read operations = 200

Figure 7-6. Equal distribution of RUs in partitions

Chapter 7 Sizing

163

On average, 1 read for a document with a size of up to 4KB = 4.5 RUs

(approx.), and writing a document with size 4KB = 7 RUs. Following will be

the typical result:

Size of total documents = 61GB (approx.)

Number of partitions required to hold above size = 7

partitions (10GB/partition)

Number of RUs required for write operations = 6028 RUs

Number of RUs required for read operations = 1800 RUs

Total number of RUs required for operations = 7828 RUs

The price of Azure Cosmos DB RUs is per 100 RUs, which means the

price mentioned in the price list must be calculated as (7900/100) × price

per 100 RUs.

In the case of Azure Cosmos DB being geo-replicated, the calculation

should include the number of regions as well.

Number of regions = 1 write region + 3 read regions,

which means 4 regions

Total number of RUs = 7900 × 4 = 31,600 RUs

For price calculation = (31,600/100) × price per 100 RUs

For the ease of reference, Azure Cosmos DB makes a capacity planner

available at www.documentdb.com/capacityplanner.

This planner requires that you to upload a sample document and

specify the values against each type of operation, number of documents,

etc. Once complete, you must hit the Calculate button, which will reflect

the calculation on the right (see Figure 7-7).

Chapter 7 Sizing

../../../../../www.documentdb.com/capacityplanner

164

Please note that the calculation mentioned in this chapter and the

calculation mentioned in the capacity planner are standard for any specific

application. I suggest that you use query metrics and monitoring metrics

from the portal.

 Optimizing RU Consumption
RU is the currency here. Therefore, the better the optimization, the less

burning of RUs. There are a few tips that can be used in conjunction with

others to improve optimization.

Following are some factors affecting the optimization of RUs.

 Document Size and Complexity
This is a crucial factor for calculating RU consumption. If you have

smaller documents, the number of RUs consumed will be far less than the

documents of larger size. More fields will increase the overhead of indexes.

Figure 7-7. Azure Cosmos DB capacity planner

Chapter 7 Sizing

165

Document complexity also plays a significant role. If you have a document

consisting of multiple embedded documents, the cost of one write will

consume higher RUs. This factor impacts consumption of RUs during

reads as well as writes. Let’s look at some examples.

To insert the following document (Listing 7-2), 31.32 RUs will be charged:

Listing 7-2. Inserting a Large-Sized Document

db.customer.insertOne({

 "CustomerKey": 1122,

 "Title": "Mr.",

 "FirstName": "Brian",

 "LastName": "Moore",

 "MaritalStatus": "Single",

 "Gender": "Male",

 "EmailAddress": "xxx@xxx.com",

 "YearlyIncome": 100000,

 "TotalChildren": 2,

 "Education": "Graduate",

 "NumberCarsOwned": 4,

 "AddressLine1": "House no. 4455, First Floor,",

 "AddressLine2": "Sector Zeta A, Delwara, US",

 "Phone": "xxx-xxx-xxx",

 "CustomerType": "New",

 "CompanyName": "Tingo"

});

globaldb:PRIMARY> db.runCommand({getLastRequestStatistics:1})

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

 "CommandName" : "insert",

 "RequestCharge" : 31.32,

 "RequestDurationInMilliSeconds" : NumberLong(3018)

}

Chapter 7 Sizing

166

And if we do the minification of the field names (see Listing 7-3), the

RUs will be optimized to 21.71 RUs.

Listing 7-3. Minification of Field Names

db.customer.insertOne({

 "ck": 1122,

 "ttl": "Mr.",

 "fn": "Brian",

 "ln": "Moore",

 "ms": "Single",

 "gn": "Male",

 "ea": "xxx@xxx.com",

 "yi": 100000,

 "tc": 2,

 "edu": "Graduate",

 "nco": 4,

 "add1": "House no. 4455, First Floor,",

 "add2": "Sector Zeta A, Delwara, US",

 "ph": "xxx-xxx-xxx",

 "ct": "New",

 "cn": "Tingo"

});

globaldb:PRIMARY> db.runCommand({getLastRequestStatistics:1})

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

 "CommandName" : "insert",

 "RequestCharge" : 21.71,

 "RequestDurationInMilliSeconds" : NumberLong(31)

}

Chapter 7 Sizing

167

If we remove two properties that might not be required in our use

case, i.e., yi (YearlyIncome) and tc (TotalChildren), the number of RUs

consumed would be 19.81 (see Listing 7-4).

Listing 7-4. RUs Consumed with Fewer Fields

globaldb:PRIMARY> db.customer.insertOne({

... "ck": 1122,

... "ttl": "Mr.",

... "fn": "Brian",

... "ln": "Moore",

... "ms": "Single",

... "gn": "Male",

... "ea": "xxx@xxx.com",

... "edu": "Graduate",

... "nco": 4,

... "add1": "House no. 4455, First Floor,",

... "add2": "Sector Zeta A, Delwara, US",

... "ph": "xxx-xxx-xxx",

... "ct": "New",

... "cn": "Tingo"

...

... });

globaldb:PRIMARY> db.runCommand({getLastRequestStatistics:1})

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

 "CommandName" : "insert",

 "RequestCharge" : 19.81,

 "RequestDurationInMilliSeconds" : NumberLong(24)

}

Chapter 7 Sizing

168

 Data Consistency
This factor primarily increases or decreases RU consumption during reads.

Stronger consistency will be costlier, and weaker will be cheaper (refer

to Chapter 6 for further details regarding consistency). Let’s look at some

examples.

First, set the consistency as strong, Navigate to Azure Cosmos DB

Account ➤ Default consistency and set Eventual, for now (see Figure 7-8).

Next, execute the following code:

globaldb:PRIMARY> db.customer.insertOne({

... "ck": 1122,

... "ttl": "Mr.",

... "fn": "Brian",

... "ln": "Moore",

... "ms": "Single",

... "gn": "Male",

Figure 7-8. Changing the default consistency in the portal to
Eventual

Chapter 7 Sizing

169

... "ea": "xxx@xxx.com",

... "edu": "Graduate",

... "nco": 4,

... "add1": "House no. 4455, First Floor,",

... "add2": "Sector Zeta A, Delwara, US",

... "ph": "xxx-xxx-xxx",

... "ct": "New",

... "cn": "Tingo"

...

... });

globaldb:PRIMARY> db.runCommand({getLastRequestStatistics:1})

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

 "CommandName" : "insert",

 "RequestCharge" : 19.81,

 "RequestDurationInMilliSeconds" : NumberLong(24)

}

Now, let’s retrieve the related record (see Listing 7-5). The record will

be retrieved with 2.35 RUs, with eventual consistency.

Listing 7-5. Retrieving the Record

globaldb:PRIMARY> db.customer.find({}).limit(1);

globaldb:PRIMARY> db.runCommand({getLastRequestStatistics:1})

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

 "CommandName" : "OP_QUERY",

 "RequestCharge" : 2.35,

 "RequestDurationInMilliSeconds" : NumberLong(4)

}

Chapter 7 Sizing

170

Let’s change the consistency to strong (see Figure 7-9).

Now, if we execute the same query, the number of RUs consumed will

increase. Note that with a consistency of strong, the same query will cost

4.7 RUs (see Listing 7-6).

Listing 7-6. Cost of Query with Strong Consistency

globaldb:PRIMARY> db.customer.find({}).limit(1);

globaldb:PRIMARY> db.runCommand({getLastRequestStatistics:1})

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

 "CommandName" : "OP_QUERY",

 "RequestCharge" : 4.7,

 "RequestDurationInMilliSeconds" : NumberLong(4)

}

Figure 7-9. Changing the default consistency in the portal to strong

Chapter 7 Sizing

171

 Indexing
By default, Azure Cosmos DB supports auto-indexing of documents, which

is optimized for read, but write will be costlier. If you have a requirement

of lots of write and less read, feel free to switch off the indexing. This will

help to reduce RU consumption during write times. Let’s look at some

examples.

Switch off auto-indexing and turn on custom indexing. Change

the consistency of indexes to lazy and use excludedPaths to exclude

properties being indexed. (Refer to Chapter 4 for more about indexing.)

Let’s look at a sample document.

{ "_id" : "469", "SiteId" : 0, "DeviceId" : 0, "SensorId" : 0,

"Temperature" : "20.9", "TestStatus" : "Pass", "deviceidday" :

"03/10/2018" }

In case of default, note the following index settings (Listing 7-7):

Listing 7-7. Default Index Settings

{

 "indexingMode": "consistent",

 "automatic": true,

 "includedPaths": [

 {

 "path": "/*",

 "indexes": [

 {

 "kind": "Range",

 "dataType": "Number",

 "precision": -1

 },

 {

 "kind": "Range",

Chapter 7 Sizing

172

 "dataType": "String",

 "precision": -1

 },

 {

 "kind": "Spatial",

 "dataType": "Point"

 },

 {

 "kind": "Spatial",

 "dataType": "LineString"

 },

 {

 "kind": "Spatial",

 "dataType": "Polygon"

 }

]

 }

],

 "excludedPaths": []

}

Following (Listing 7-8) is the RU consumption for insertion, which

took 12.9 RUs, with a latency equivalent to 6ms.

Listing 7-8. RU Consumption for Insertion

db.coll.insert({ "_id" : "469", "SiteId" : 0, "DeviceId" : 0,

"SensorId" : 0, "Temperature" : "20.9", "TestStatus" : "Pass",

"deviceidday" : "03/10/2018" });

db.runCommand({getLastRequestStatistics: 1});

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

Chapter 7 Sizing

173

 "CommandName" : "insert",

 "RequestCharge" : 12.9,

 "RequestDurationInMilliSeconds" : NumberLong(6)

}

Following (Listing 7-9) is the RU consumption while reading the

document. The request charge for the read request will be 3.48 RUs, with a

latency of 5ms.

Listing 7-9. RU Consumption While Reading the Document

db.coll.find({_id:ObjectId("5b0546a8512d8c81c1e6bf95")});

db.runCommand({getLastRequestStatistics: 1});

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

 "CommandName" : "OP_QUERY",

 "RequestCharge" : 3.48,

 "RequestDurationInMilliSeconds" : NumberLong(5)

}

Now, let’s perform custom indexing. The index setting will look like

Listing 7-10.

Listing 7-10. Custom Index Settings

{

 "indexingMode": "lazy",

 "automatic": true,

 "includedPaths": [

 {

 "path": "/*",

 "indexes": [

 {

Chapter 7 Sizing

174

 "kind": "Range",

 "dataType": "Number",

 "precision": -1

 },

 {

 "kind": "Range",

 "dataType": "String",

 "precision": -1

 },

 {

 "kind": "Spatial",

 "dataType": "Point"

 },

 {

 "kind": "Spatial",

 "dataType": "LineString"

 },

 {

 "kind": "Spatial",

 "dataType": "Polygon"

 }

]

 }

],

 "excludedPaths": [

 {

 "path": "/SiteId/?"

 },

 {

 "path": "/DeviceId/?"

 },

Chapter 7 Sizing

175

 {

 "path": "/Temperature/?"

 },

 {

 "path": "/TestStatus/?"

 },

 {

 "path": "/TimeStamp/?"

 },

 {

 "path": "/deviceidday/?"

 }

]

}

Listing 7-11 calculates the RU consumption for the insertion, which

took 4.95 RUs, with latency equivalent to 7ms.

Listing 7-11. RU Consumption for Insertion

db.coll.insert({ "_id" : ObjectId(), "SiteId" : 2, "DeviceId"

: 0, "SensorId" : 0, "Temperature" : "20.9", "TestStatus" :

"Pass", "deviceidday" : "03/10/2018" });

db.runCommand({getLastRequestStatistics:1})

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

 "CommandName" : "insert",

 "RequestCharge" : 4.95,

 "RequestDurationInMilliSeconds" : NumberLong(7)

}

Following (Listing 7-12) is the RU consumption while reading. The

request charge for the read request is 3.48 RUs, with a latency of 4 ms.

Chapter 7 Sizing

176

Listing 7-12. RU Consumption While Reading

globaldb:PRIMARY> db.coll.find({_id:ObjectId("5b0546a8512d8c81c

1e6bf95")})

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

 "CommandName" : "OP_QUERY",

 "RequestCharge" : 3.48,

 "RequestDurationInMilliSeconds" : NumberLong(4)

}

Note that there is a significant decrease in RU consumption while

inserting the document, but read remains the same.

 Query Patterns
The complexity of queries plays a significant role here. If you have used

an indexed property, the RU consumption will be optimized. However,

this is valid in non-partitioned collections. In partitioned collections, use

of the PartitionKey value is important and can help you to optimize the

RUs. If both PartitionKey and the indexed property are used together, this

increases the efficiency of RU consumption. Let us look at some examples.

Assume PartitionKey is on SensorId and execute the query with only

one record, as follows:

globaldb:PRIMARY> db.eventmsgss.find({SensorId:8010003}).

limit(1);

globaldb:PRIMARY> db.runCommand({getLastRequestStatistics:1})

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

 "CommandName" : "OP_QUERY",

Chapter 7 Sizing

177

 "RequestCharge" : 6.98,

 "RequestDurationInMilliSeconds" : NumberLong(5)

}

If you change the number of records to be retrieved, then execute the

following:

globaldb:PRIMARY> db.eventmsgss.find({SensorId:8010003}).

limit(5);

globaldb:PRIMARY> db.runCommand({getLastRequestStatistics:1})

{

 "_t" : "GetRequestStatisticsResponse",

 "ok" : 1,

 "CommandName" : "OP_QUERY",

 "RequestCharge" : 9.64,

 "RequestDurationInMilliSeconds" : NumberLong(6)

}

The RU charge will increase to 9.64 RUs.

Conclusion
In Azure Cosmos DB, you don’t need to worry about Hardware sizing

instead, you can use the application’s transactions requirement as the

basis of sizing, e.g. how many writes, reads, level of consistency, indexing

etc. and you can naturally be able to translate into number of RUs

required. Once you specify the RU, Azure Cosmos DB will configure the

hardware required behind the scenes for which you don’t need to worry.

It is important to get the sizing before the deployment but don’t sweat

too much, you can do this post-facto as well. You can go-ahead with the

RUs you have anticipated then you can monitor consumption of RUs via

throughput tab under metrics and increase / decrease the RUs on-the-fly

without any downtime.

Chapter 7 Sizing

179© Manish Sharma 2018
M. Sharma, Cosmos DB for MongoDB Developers,
https://doi.org/10.1007/978-1-4842-3682-6_8

CHAPTER 8

Migrating to Azure
Cosmos DB–
MongoDB API
Now that I have covered most of the aspects of Azure Cosmos

DB–MongoDB API, in this chapter, we will delve into the actual logistics of

migrating an entire application to Azure Cosmos DB–MongoDB API.

 Migration Strategies
Many strategies exist to migrate NoSQL data from one database to another

type of database. The major worry for a developer while migrating from

one technology to another is to ensure compatibility between the target

and source. With protocol support, Azure Cosmos DB with Mongo API

tries to resolve the compatibility issues. Ideally, you should be changing

only the connection string, which is available mostly in the configuration

file, and you can easily replace it. But there are a few instances in which

you must change the code, as there are commands that are not supported

here, e.g., $text, $pull with condition, etc. You can access the MongoDB

API support page at https://aka.ms/mongodb-feature-support for the

most updated list of commands supported.

../../../../../https@aka.ms/mongodb-feature-support

180

The next most important consideration is how to migrate the data with

minimal or no downtime. This would be easy if Azure Cosmos DB could

be attached to the existing MongoDB cluster and all the data synced. But

don’t worry, there are other ways to ease the migration. I will discuss these

next. Refer to Listings 8-1–8-12.

 mongoexport and mongoimport
MongoDB has two tools, mongoexport and mongoimport, to ease migration.

As their names imply, they generally are used to export existing data onto

JSON and to import it to MongoDB instances. You can utilize both tools

with the Azure Cosmos DB as follows: from an SSH or RDP connection

onto the Mongo server or client able to access the server, execute the

commands specific to the operating system discussed individually in the

following sections.

 For Linux

Listing 8-1. mongoexport Command Template

mongoexport --db <name of database> --collection <name of

collection> --out <name of json file to export data in>

Listing 8-2. Exporting Data Using the mongoexport Command

mongoexport --db test --collection sample --out sample.json

Now, let’s execute import-to-import data onto Azure Cosmos DB using

mongoimport.

Chapter 8 Migrating to azure CosMos DB–MongoDB api

181

Listing 8-3. mongoimport Command Template

mongoimport --host <Azure Cosmos DB URI>:10255 -u <Name of

Azure Cosmos DB account> -p <primary or secondary key> --db

<name of the database> --collection <name of collection> --ssl

--sslAllowInvalidCertificates --type json --file <path of json

file>

Listing 8-4. mongoimport Sample Command

mongoimport --host testmongo.documents.azure.com:10255 -u

testmongo -p jsF6xFsNXz6lZ3tGVjx7bErkQCzoJUzyI2lj8MAqCD --db

test --collection sample --ssl --sslAllowInvalidCertificates

--type json --file sample.json

 For Windows mongodump/mongorestore
mongodump is a MongoDB utility to export data in a binary format. It also

can compress the exported data, for easy movement. mongorestore

restores data from the dump and pushes it back into a non-binary format.

Following are the command details:

 For Linux

Listing 8-5. mongodump Command Template

mongodump --host <hostname> --port <port> --collection <name of

collection> --username <username> --password <password> --out

<nameof file> --gzip

Listing 8-6. mongorestore Command Template

mongodump --host mongodbtest.site.net --port 37017 --collection

coll --username test --password "test" --out mongodbtestdmp --gzip

Chapter 8 Migrating to azure CosMos DB–MongoDB api

182

Now, let’s restore the dump to Azure Cosmos DB.

Listing 8-7. mongorestore Command Sample

mongorestore --host <Azure Cosmos DB account name>.documents.

azure.com:10255 -u <Azure Cosmos DB account name> -p <account's

primary/secondary key> --db <name of database> --collection

<name of collection>--ssl --sslAllowInvalidCertificates

mongodbtestdmp --gzip

Listing 8-8. mongodump Command Template

mongorestore --host testmongocosmos.documents.azure.com:10255

-u testmongocosmos -p jsF6xFsNXz6lZ3tGVjx7bErkQCzoJUzyI2lj8MAqC

--db test --collection testcoll --ssl

--sslAllowInvalidCertificates mongodbtestdmp --gzip

 For Windows

Listing 8-9. mongodump Command Template

Mongodump.exe --host <hostname> --port <port> --collection

<name of collection> --username <username> --password

<password> --out <nameof file> --gzip

Listing 8-10. mongorestore Command Template

Mongodump.exe --host mongodbtest.site.net --port 37017

--collection cooll --username test --password "test" --out

mongodbtestdmp --gzip

Now, let’s restore the dump to Azure Cosmos DB.

Chapter 8 Migrating to azure CosMos DB–MongoDB api

183

Listing 8-11. mongorestore Command Sample

mongorestore.exe --host <Azure Cosmos DB account name>.

documents.azure.com:10255 -u <Azure Cosmos DB account

name> -p <account's primary/secondary key> --db <name

of database> --collection <name of collection>--ssl

--sslAllowInvalidCertificates mongodbtestdmp --gzip

Listing 8-12. mongodump Command Template

mongorestore.exe --host testmongocosmos.

documents.azure.com:10255 -u testmongocosmos -p

jsF6xFsNXz6lZ3tGVjx7bErkQCzoJUzyI2lj8MAqC --db test

--collection testcoll --ssl --sslAllowInvalidCertificates

mongodbtestdmp --gzip

BulkExecutor

This tool is recent addition into the Azure Cosmos DB to upload million

of documents in few minutes. This is a client library which is designed

basis AIMD style congestion control mechanism. This will help in creating

multiple threads basis the key ranges and hit all the partitions in-parallel.

As we have explained in Chapter 7, each partition will have equal RUs

hence hitting all the partitions together will increase the throughput

consumption to 100%. It can consume greater than 500 K RU/s and push

Terabytes of data in an hour. For API details refer Listings 8-13 and 8-14.

Listing 8-13. Usage of BulkImport API to create the data

BulkImportResponse bulkImportResponse = await bulkExecutor.

BulkImportAsync(

 documents: documentsToImportInBatch,

 enableUpsert: true,

Chapter 8 Migrating to azure CosMos DB–MongoDB api

184

 disableAutomaticIdGeneration: true,

maxConcurrencyPerPartitionKeyRange: null,

 maxInMemorySortingBatchSize: null,

 cancellationToken: token);

Listing 8-14. Usage of BulkImport API to which will update the

document if exists

BulkUpdateResponse bulkUpdateResponse = await bulkExecutor.

BulkUpdateAsync(

 updateItems: updateItems,

 maxConcurrencyPerPartitionKeyRange: null,

 maxInMemorySortingBatchSize: null,

 cancellationToken: token);

 Application Switch
Now, it’s time to change the application, by switching the connection

string and connecting it to the Azure Cosmos DB–MongoDB API (see

Figures 8-1 and 8-2).

Chapter 8 Migrating to azure CosMos DB–MongoDB api

185

Copy the connection string from the portal (either primary or

secondary), then replace it with the existing connection string (in your

application’s app.config or web.config).

Figure 8-1. Copying the connection string from the portal (either
primary or secondary)

Figure 8-2. Replacing the connection string in the application’s
config file

Test the application thoroughly, performing both functional and load

tests, to ensure the correct outcome from the application.

Chapter 8 Migrating to azure CosMos DB–MongoDB api

186

Note testing is crucial, as it will give you a sense of the rus
required to run the application or to handle peak loads, which you
can change on the fly. this will also utilize the knowledge you’ve
gained throughout the book.

 Optimization
Following is the optimization process:

 1. In Azure Cosmos DB, increase the RUs for the

duration of the import/restore and keep an eye on

the throttling at Azure Metrics. If an error occurs,

increase the RUs further. (See Figure 8-3.)

Figure 8-3. Monitoring throughput metrics for throttling errors

Chapter 8 Migrating to azure CosMos DB–MongoDB api

187

 2. Make sure the SSL is enabled at the query string

level, as Azure Cosmos DB doesn’t allow unsecure

connections.

 3. Try to use virtual machine in Azure in the same

region in which Azure Cosmos DB is configured.

Otherwise, network latency can increase the

restore/import time.

 4. It is possible to determine network latency from the

client machine. Execute setVerboseShell(true) in

the MongoDB shell (see Figure 8- 4). Next, execute

the following command:

db.coll.find().limit(1)

Figure 8-4. Identifying the latency from the MongoDB shell

 5. For mongoimport, configure batchSize and

numInsertionWorkers as follows:

 a. batchSize = total provisioned RUs/RUs

consumed for a single document. If the

calculated batchSize <= 24, then use it as the

batchSize value; otherwise, use 24.

 b. numInsertionWorkers = (provisioned

throughput * latency in seconds)/(batch size *

consumed RUs for a single write).

Chapter 8 Migrating to azure CosMos DB–MongoDB api

188

Following is an example:

batchSize= 24

RUs provisioned=10000

Latency=0.100 s

RU charged for 1 doc write=10 RUs

numInsertionWorkers= (10000 RUs x 0.1 s) / (24 x 10 RUs) =

4.1666

The final command would be

mongoimport --host testmongocosmos.documents.azure.com:10255

-u testmongocosmosd -p jsF6xFsNXz6lZ3tGVjx7bErkQCzoJUzyI2lj8

--db test --collection coll --ssl --sslAllowInvalidCertificates

--type json --file sample.json --numInsertionWorkers 4

--batchSize 24

Code: Finished mongoimport command

Note in addition to the tools described in the preceding text, you
can also use other tools, such as mongomirror and mongochef, to
migrate your data from mongodb to azure Cosmos DB.

Conclusion
It makes lot of sense to migrate from Mongo DB to Azure Cosmos DB -

Mongo DB API due to no management overhead, high scalability, high

elasticity, lowest latency, highest availability and all of them covered

through SLA. Now, here comes the migration which is lot challenging

which is straight forward with Azure Cosmos DB as there are minimal or

no changes required due to its powerful MongoDB protocol support. For

data, once again the protocol support pitches-in and provide possibility

to use MongoDB’s existing tools very much relevant. You can use

Chapter 8 Migrating to azure CosMos DB–MongoDB api

189

MongoDB’s shell command import/export, restore or their OOTB tools

e.g. mongomirror, mongochef etc. Recently, there is an introduction of

BulkExecutor tool which will make data push as parallel and reduce time

push data as optimize as 40 - 50 times.

In next chapter we will look into advanced functionalities e.g. Spark,

Aggregation pipeline etc.

Chapter 8 Migrating to azure CosMos DB–MongoDB api

191© Manish Sharma 2018
M. Sharma, Cosmos DB for MongoDB Developers,
https://doi.org/10.1007/978-1-4842-3682-6_9

CHAPTER 9

Azure Cosmos
DB–MongoDB API
Advanced Services
Finally, we have reached the last chapter in our journey, and I would like

to share some of the important points that are applicable in day-to-day

scenarios.

 Aggregation Pipeline
This is the inherent feature in MongoDB that is critical for the workloads

that require analytics and specific aggregation. In Azure Cosmos DB, the

data aggregation pipeline is supported. However, at the time of writing

this book, it was out for public preview and must be enabled explicitly

by navigating to the preview items in the Azure portal, under the Azure

Cosmos DB blade.

Now, let’s get our hands dirty. Open your favorite MongoDB console

and connect to Azure Cosmos DB.

sudo mongo <Azure Cosmos DB Account Name>.documents.azure.

com:10255/db -u < Azure Cosmos DB Account Name > -p <primary/

secondary key> --ssl --sslAllowInvalidCertificates

192

Following (Listing 9-1) is the sample document and the command to

aggregate to count messages per sensor (Listing 9-2):

Listing 9-1. Sample Document

{ "_id" : ObjectId("5acafc5e2a90b81dc44b3963"), "SiteId" :

0, "DeviceId" : 0, "SensorId" : 0, "Temperature" : "20.9",

"TestStatus" : "Pass", "TimeStamp" : ISODate("2018-03-

10T05:38:34.835Z"), "deviceidday" : "03/10/2018" }

Listing 9-2. Aggregate Command to Count Messages per Sensor,

Where DeviceId Is 6 and TestStatus Is Pass

globaldb:PRIMARY> db.book.aggregate([{$match:{TestStatus:

"Pass", DeviceId:6} },{$group:{_id: "$SensorId", total: {$sum:

1}}},{ $sort:{SensorId: -1}}]);

The output follows:

{ "_id" : 0, "total" : 173 }

{ "_id" : 1, "total" : 173 }

{ "_id" : 2, "total" : 173 }

{ "_id" : 3, "total" : 173 }

{ "_id" : 4, "total" : 173 }

{ "_id" : 5, "total" : 173 }

{ "_id" : 6, "total" : 173 }

{ "_id" : 7, "total" : 173 }

{ "_id" : 8, "total" : 173 }

{ "_id" : 9, "total" : 173 }

Now, let’s create another example. In this example (Listing 9-3), we will

use db.runCommand instead of db.collection.find().count. The simple

reason is that db.collection.find().count() can result in an inaccurate

count if the orphaned document exists or partition load-balancing is

Chapter 9 azure Cosmos DB–mongoDB apI aDvanCeD servICes

193

occurring. To avoid such situations, it is recommended in MongoDB to

use db.runCommand with sharded clusters. By default in Azure Cosmos DB,

every instance consists of a partition; therefore, it is appropriate to use db.

runCommand for counts instead of db.Collection.find().count.

Listing 9-3. Counting the Number of Documents in a Collection

Named “book” That Has DeviceId>10

globaldb:PRIMARY> db.runCommand({ count: "book",query:

{"DeviceId": {$gte:10} }})

The output follows:

{ "_t" : "CountResponse", "ok" : 1, "n" : NumberLong(81828) }

Let’s add some complexity to the count command Listing 9-4.

Listing 9-4. Counting the Number of Documents in a Collection

Named “book” That Has DeviceId Greater Than Ten and Skips the

First Ten Rows

globaldb:PRIMARY> db.runCommand({ count: "book",query:

{"DeviceId": {$gte:10} }, skip: 10})

output

{ "_t" : "CountResponse", "ok" : 1, "n" : NumberLong(81818) }

The code in Listing 9-5 gets the distinct DeviceIDs in the collection

“book.”

Listing 9-5. Selecting a Distinct Value for a Specified Key

globaldb:PRIMARY> db.runCommand({distinct: "book",

key:"DeviceId"})

{

 "_t" : "DistinctResponse",

 "ok" : 1,

Chapter 9 azure Cosmos DB–mongoDB apI aDvanCeD servICes

194

 "waitedMS" : NumberLong(0),

 "values" : [

 "20.9"

]

}

Listing 9-6 groups devices by basis and counts the number of sensors

in each device.

Listing 9-6. Grouping Devices by Basis and Counting the Number

of Sensors in Each

globaldb:PRIMARY> db.runCommand({aggregate: "book",

pipeline:[{$group: { _id: "$DeviceId", count: {$sum : 1 }} }] })

The output for the preceding listing follows:

{ "result" : [

 "_t" : "AggregationPipelineResponse`1",

 "ok" : 1, "_id" : "DeviceId",

 "waitedMS" : NumberLong(0),051

 "cursor" : {

] "ns" : "db.book",

} "id" : NumberLong(0),

globaldb:PRIMARY"firstBatch" : [

 {

 "_id" : 0,

 "count" : 20

 },

 {

 "_id" : 1,

 "count" : 2

 },

 {

Chapter 9 azure Cosmos DB–mongoDB apI aDvanCeD servICes

195

 "_id" : 2,

 "count" : 20

 },

 {

 "_id" : 3,

 "count" : 2

 }

]}}

Using $match, you can aggregate the command (Listing 9-7).

Listing 9-7. Aggregating the Query to Identify the Average

Temperature vs. DeviceId

db.book.aggregate([

 { $match: { "$Temperature": { gte: 0 } } },

 {

 $group: {

 "_id": "$DeviceId",

 "avgTemperature": { "$avg": "$Temperature" }

 }

 }

])

The output follows:

{ "_id" : 0, "avgDevice" : 0 }

{ "_id" : 1, "avgDevice" : 1 }

{ "_id" : 2, "avgDevice" : 2 }

Chapter 9 azure Cosmos DB–mongoDB apI aDvanCeD servICes

196

Let’s use $project and $match with the condition.

db.eventmsgsd.aggregate([{$match:{DeviceId:1001}},

 { $project: { Temperature: 1, "DeviceId": 1,

 "SensorId" : 1, "SiteId": {

 $cond: { if: { $eq: [1, "$SiteId"] },

 then: "$$REMOVE", else: "$SiteId"

 } } } }]);

The output follows:

{ "_id" : ObjectId("5b0449132a90b84018822f96"),

"Temperature" : "20.9", "DeviceId" : 1001, "SensorId" : 1001003 }

{ "_id" : ObjectId("5b0449132a90b84018822f97"),

"Temperature" : "20.9", "DeviceId" : 1001, "SensorId" : 1001004 }

As you can see, Azure Cosmos DB supports most of the aggregate

expressions and pipeline stages that allow an application developer to

migrate quickly to Azure Cosmos DB without changing any code, in most

cases.

 Spark Connector
This is the most enriched and efficient way to aggregate/analyze your data.

MongoDB’s connector for Spark can be used here as well.

Let’s go through the process step by step.

Step 1: Provision HD Insight and add Spark to it. To do this, navigate

to portal.azure.com, click Create a resource, search for HDInsight, then

select the appropriate option (see Figure 9-1).

Chapter 9 azure Cosmos DB–mongoDB apI aDvanCeD servICes

197

A page will appear, with detailed information about HDInsight. On this

page, click Create (Figure 9-2).

Figure 9-1. Creating HDInsight from the Azure portal (search and
select the image)

Figure 9-2. HDInsight service details page

Chapter 9 azure Cosmos DB–mongoDB apI aDvanCeD servICes

198

Now, a form will appear, on which you must fill in the requisite

information. Once you have done this, click Next (see Figure 9-3).

Figure 9-3. Fill in the basic details

Chapter 9 azure Cosmos DB–mongoDB apI aDvanCeD servICes

199

Click Cluster type and select your preferred processing framework

(Figure 9-4).

Figure 9-4. Click Cluster type and choose Spark (version 2.2.0)

Chapter 9 azure Cosmos DB–mongoDB apI aDvanCeD servICes

200

Now come back and click Next. Here, you can specify the storage-

related information. For now, you can leave its default and click Next (see

Figure 9-5).

Figure 9-5. Specify the storage information

Chapter 9 azure Cosmos DB–mongoDB apI aDvanCeD servICes

201

Now, click Create to submit the deployment of the HDInsight cluster

with Spark (see Figure 9-6).

Figure 9-6. Summary form

Chapter 9 azure Cosmos DB–mongoDB apI aDvanCeD servICes

202

Step 2: Let’s use SSH to get into the Spark cluster. Navigate to SSH ➤

Cluster login, then select Hostname from the drop-down menu and copy

the SSH command in the box beneath it (see Figure 9-7). Now open SSH

tool and copy paste the command to connect to the Head Node (refer

Figure 9-8).

Step 3: Download the Spark connector, using the following code:

wget https://scaleteststore.blob.core.windows.net/mongo/mongo-

spark- connector-assembly-2.2.0.jar

Figure 9-7. Locating the SSH command

Figure 9-8. Connect to Head Node using SSH

Chapter 9 azure Cosmos DB–mongoDB apI aDvanCeD servICes

203

Step 4: Run the Spark shell command, by replacing it with your Mongo

endpoint, database, and collection details. Both input and output can be

the same.

spark-shell --conf "spark.mongodb.input.uri=mongodb://testmongo:

jsFlj8MAqCDqjaPBE2DWRhm9jRx5QfMQ3SYf9vwGxElPjZmeQKO1vbA==

@testmongo.documents.azure.com:10255/?ssl=true&replicaSet=

globaldb" --conf "spark.mongodb.output.uri=mongodb:

//testmongobook:jsF6xFsNXz6lZ3tGVjx7bErkQCzoJUzyI2lj8MAqCDqjaPBE2

DWRhm9jRx5QfMQ3SYf9vwGxElPjZmeQKO1vbA==@testmongobook.

documents.azure.com:10255/?ssl=true&replicaSet=globaldb" --conf

"spark.mongodb.input.database=db" --conf="spark.mongodb.

input.collection=eventmsgss" --conf "spark.mongodb.output.

database=db" --conf="spark.mongodb.output.collection=coll"

--jars mongo-spark-connector-assembly-2.2.0.jar

Now, after successful execution of the above code, you will get

the Scala console, which is the playground for SparkSQL. Execute the

following code:

scala> import com.mongodb.spark._

import com.mongodb.spark._

scala> import org.bson.Document

import org.bson.Document

scala> val rdd = MongoSpark.load(sc)

Now, let’s execute a few aggregate queries (see Listings 9-8 and 9-9).

Listing 9-8. Counting the Number of Records on the Basis of the Filter

scala> val agg = rdd.withPipeline(Seq(Document.parse("{ $match:

{ DeviceId : { $eq : 1004 } } }")))

scala> println(agg.count)

Chapter 9 azure Cosmos DB–mongoDB apI aDvanCeD servICes

204

Let’s see another example.

Listing 9-9. Grouping by SensorId and Counting the Values

val agg = rdd.withPipeline(Seq(Document.parse("{ $group: { _id

: '$SensorId', total:{$sum:1} } } ")))

Now, you can run all your aggregate queries more efficiently. You can

export the result to another collection of Azure Cosmos DB, which will

help you to analyze all the data and aggregate it offline. This aggregated

collection can then be used to showcase the result over the UI quickly.

 Conclusion
You now have reviewed most of the Azure Cosmos DB–Mongo DB API

features and functionalities. The protocol support keeps the migration

path seamless and the learning curve minimal. In a single Azure Cosmos

DB instance, you get high availability for each partition and built-in

disaster recovery, if you configure the minimum of one geo-replication.

Also, you get the comprehensive SLAs for consistency, availability, latency,

and throughput, which can be a very costly affair to set up by yourself. This

will help you to make your application highly performant and available

throughout the year, with the least possible latency. All of this will increase

the user experience of your application. Considering these facts, it is a no-

brainer to select Azure Cosmos DB to upscale your application and add the

featured architecture tools without much hassle.

Note the azure Cosmos DB–mongoDB apI is limited by features
that do not exist in mongoDB, e.g., stored procedure, functions,
change feeds, etc. however, I am hopeful that all those features will
soon be part of this apI.

Chapter 9 azure Cosmos DB–mongoDB apI aDvanCeD servICes

205© Manish Sharma 2018
M. Sharma, Cosmos DB for MongoDB Developers,
https://doi.org/10.1007/978-1-4842-3682-6

Index

A, B
Atomicity, consistency, isolation,

and durability (ACID), 6
Auto-shifting geo

APIs, 72–73, 75–77
Azure Cosmos DB–Mongo DB API

aggregation pipeline, 191
command to count

messages, 192–193
count command, 193
distinct DeviceIDs, 193, 194
grouping devices, 194–195
$match, 195–196
sample document, 192

application switch, 184–185
migration strategies, 179

mongoexport and
mongoimport, 180–181

for windows mongodump/
mongorestore, 181–183

Spark connector
aggregate queries, 203
Cluster type, 199–200
HD Insight, 196, 198
grouping by SensorId, 204
shell command, 203
SSH, 202
storage information, 200

C
Capital expenditure (Capex), 9
Causal consistency, 141
Command-line interface (CLI), 69
Consistency, 137

Azure Cosmos DB, 142
balancing act, 153
bounded staleness, 145–146
consistent reads/writes, 142
high throughput, 148, 150,

152–153
metrics, 154
session, 147–148
strong consistency, 142–144

in distributed databases, 137
CAP theorem, 139
disaster recovery, 138
network latency, 140
PACELC, 139
ReplicaSet, 137

MongoDB, 140
causal consistency, 141
read concerns, 140–141
shell command, 141

Consistency, availability, and
partition (CAP) tolerance, 2

Coordinate reference system
(CRS), 106

../../../../../https@doi.org/10.1007/978-1-4842-3682-6

206

Cosmos DB, 11
consistency, 78–79

bounded staleness, 51
consistent prefix, 52
eventual, 53–54
session, 51
strong, 50

data model, 12
elastic scale, 49

storage, 49
throughput, 49

geo-replication, 25
aspects to consider, 28
availability, 30
consistency, 30
latency, 29
multi-geo deployment, 27
reliability, 31
throughput, 30

global distribution, 78–79
performance, 54–55
protocol support and

multimodal API
Cassandra API, 48
Graph API, 41, 43, 45, 47–48
MongoDB API, 38–40
SQL (DocumentDB) API,

34–37
table storage API, 32, 34

provisioning, 13–14
API, 15
collection ID, 19
database ID, 19

Data Explorer, 19, 23
enable geo-redundancy, 16
ID, 15
input from, 18
JSON document, 22
location, 16
MongoDB Shell, 24
pin to dashboard, 16
resource group, 16
shared key, 20
storage capacity, 20
subscription, 15
throughput, 20
unique key, 21

SLA, see Service level agreement
(SLA)

D, E, F
Database availability (DA), 62
Disaster recovery (DR), 66, 138

G
GeoJSON, 88
Geo-replication, 25, 67–71

aspects to consider, 28
availability, 30
consistency, 30
latency, 29
multi-geo deployment, 27
reliability, 31
throughput, 30

Index

207

H
High throughput, consistency

consistent prefix, 149–150
eventual consistency, 150–151

I, J, K, L
Indexing, 81

Azure Cosmos DB, 93
array indexes, 96–97
scale and settings page, 94–95
sparse indexes, 97
TTL indexes, 95–96
unique indexes, 97–98

custom
configuration, 98
data types, 108
geospatial indexes, 105, 107
hash indexes, 105
modes, 99–101, 103
paths, 104
precision, 108
range indexes, 105

in MongoDB, 81
compound index, 87
geospatial index, 88–89, 91
hashed index, 93
multikey index, 88
single field index, 82–83,

85–86
text index, 91–92

Infrastructure as a service (IaaS), 9

M
Migration strategies, 179

application
switch, 184–185

mongoexport and
mongoimport, 180–181

for windows mongodump/
mongorestore, 181–183

MongoDB replication, 62
arbiter nodes, 64–66
data-bearing

nodes, 62–64
Multi-homing API, 30

N
NoSQL, 2

atomicity, 6
availability, 7–8
and cloud, 8

IaaS, 9
PaaS, 9
SaaS, 10

columnar, 3
consistency, 6–8
document, 3–4
durability, 6
graph, 4–5
isolation, 6
key-value pair, 2–3
partition

tolerance, 7–8

Index

208

O
Online transaction processing

(OLTP), 1
Operating expenses (Opex), 9
Optimizations, 122–126, 186–188

P, Q
PACELC, 7
Partitioning, 113

DeviceID, 118–119
DeviceID and Day, 119–120
find statement, 120
fixed collection, 114
geo-replication, 121
JSON structure of sensor

data, 117
TTL limit, 121
unlimited collection, 115

Partition keys, 126
evaluating field to be

potential, 127
message structure, 127
selection, 128–129, 131, 133–135
use case, 126

Platform as a service (PaaS), 9
Properties graph, 41

R
Relational database management

systems (RDBMSs), 2, 109
Request units (RUs), 155–156

allocation, 156, 158–159
calculation, 159–164
data consistency, 168–170
document size and

complexity, 164–165, 167
indexing, 171–173, 175–176
query patterns, 176–177

Rollback, 6

S
Service level agreement (SLA)

availability, 55–56
consistency, 58
latency, 59
throughput, 56–57

Sharding, 109–110
advantages, 113
components, 110
shardKey, 111

hashed key, 111–112
range key, 111
zones, 112–113

Sizing
parameters, 155
RU (see Request units (RUs))

Software as a service (SaaS), 9
Spark connector

aggregate queries, 203
Cluster type, 199–200
HD Insight, 196, 198
grouping by SensorId, 204
shell command, 203

Index

209

SSH, 202
storage information, 200

SQL (DocumentDB) API, 34
FROM clause, 35
ORDER BY clause, 36
query example, 36–37
SELECT clause, 35
structure of query, 34

WHERE clause, 35
Standby mode, 63

T, U, V, W, X, Y, Z
Time-to-live (TTL)

indexes, 95–96

limit, 121

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Why NoSQL?
	Types of NoSQL
	Key-Value Pair
	Columnar
	Document
	Graph

	What to Expect from NoSQL
	Atomicity
	Consistency
	Isolation
	Durability
	Consistency
	Availability
	Partition Tolerance
	Example 1: Availability
	Example 2: Consistency

	NoSQL and Cloud
	IaaS
	PaaS
	SaaS

	Conclusion

	Chapter 2: Azure Cosmos DB Overview
	Data Model Overview
	Provisioning Azure Cosmos DB
	Turnkey Global Distribution
	Latency
	Consistency
	Throughput
	Availability
	Reliability

	Protocol Support and Multimodal API
	Table Storage API
	SQL (DocumentDB) API
	FROM Clause
	WHERE Clause
	SELECT Clause
	ORDER BY Clause
	Query Example

	MongoDB API
	Graph API
	Cassandra API

	Elastic Scale
	Throughput
	Storage

	Consistency
	Strong
	Bounded Staleness
	Session
	Consistent Prefix
	Eventual

	Performance

	Service Level Agreement (SLA)
	Availability SLA
	Throughput SLA
	Consistency SLA
	Latency SLA

	Conclusion

	Chapter 3: Azure Cosmos DB Geo-Replication
	Database Availability (DA)
	MongoDB Replication
	Data-Bearing Nodes
	Arbiter Nodes

	Azure Cosmos DB Replication
	Auto-Shifting Geo APIs
	Consistency and Global Distribution
	Conclusion

	Chapter 4: Indexing
	Indexing in MongoDB
	Single Field Index
	Query Using an Index
	Query Not Using an Index

	Compound Index
	Multikey Index
	Geospatial Index
	Text Index
	Hashed Index

	Indexing in Azure Cosmos DB
	TTL Indexes
	Array Indexes
	Sparse Indexes
	Unique Indexes

	Custom Indexing
	Indexing Modes
	Indexing Paths
	Index Kinds
	Hash Indexes
	Range Indexes
	Geospatial Indexes

	Index Precision
	Data Types

	Conclusion

	Chapter 5: Partitioning
	Sharding
	Partitioning in Azure Cosmos DB
	Optimizations
	Selecting a Partition Key
	Use Case
	Evaluate Every Field to Be a Potential Partition Key
	Selection of the Partition Key

	Conclusion

	Chapter 6: Consistency
	Consistency in Distributed Databases
	Consistency in MongoDB
	Consistency in Azure Cosmos DB
	Consistent Reads/Writes
	Strong Consistency
	Bounded Staleness
	Session

	High Throughput
	Consistent Prefix
	Eventual

	Conclusion

	Chapter 7: Sizing
	Request Units (RUs)
	Allocation of RUs
	Calculating RUs
	Optimizing RU Consumption
	Document Size and Complexity
	Data Consistency
	Indexing
	Query Patterns

	Conclusion

	Chapter 8: Migrating to Azure Cosmos DB–MongoDB API
	Migration Strategies
	mongoexport and mongoimport
	For Linux

	For Windows mongodump/mongorestore
	For Linux
	For Windows
	BulkExecutor

	Application Switch
	Optimization
	Conclusion

	Chapter 9: Azure Cosmos DB–MongoDB API Advanced Services
	Aggregation Pipeline
	Spark Connector
	Conclusion

	Index

